


SAT 2005
Satisfiability Research in the Year 2005



SAT 2005
Satisfiability Research in the Year 2005

Edited by

ENRICO GIUNCHIGLIA

Università di Genova, Italy

and

TOBY WALSH

National ICT Australia and University of New South Wales,
Sydney, Australia

Reprinted from Journal of Automated Reasoning, Vol. 35, Nos. 1–3, 2005



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-4552-3 (HB)
ISBN-13 978-1-4020-4552-3 (HB)
ISBN-10 1-4020-5571-3 (e-book)
ISBN-13 978-1-4020-5571-3 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
* 2006 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchase of the work.



TABLE OF CONTENTS

ENRICO GIUNCHIGLIA and TOBY WALSH / Satisfiability in the
Year 2005 1Y2

ATEET BHALLA, INÊS LYNCE, JOSÉ T. DE SOUSA and JOÃO
MARQUES-SILVA / Heuristic-Based Backtracking Relaxation
for Propositional Satisfiability 3Y24

GUOQIANG PAN and MOSHE Y. VARDI / Symbolic Techniques
in Satisfiability Solving 25Y50

MICHAEL ALEKHNOVICH, EDWARD A. HIRSCH and
DMITRY ITSYKSON / Exponential Lower Bounds for the
Running Time of DPLL Algorithms on Satisfiable Formulas 51Y72

STEFAN SZEIDER / Backdoor Sets for DLL Subsolvers 73Y88

JAN JOHANNSEN / The Complexity of Pure Literal Elimination 89Y95

JOHN THORNTON / Clause Weighting Local Search for SAT 97Y142

ALAN M. FRISCH, TIMOTHY J. PEUGNIEZ, ANTHONY
J. DOGGETT and PETER W. NIGHTINGALE / Solving
Non-Boolean Satisfiability Problems with Stochastic Local
Search: A Comparison of Encodings 143Y179

YACINE BOUFKHAD, OLIVIER DUBOIS, YANNET INTERIAN
and BART SELMAN / Regular Random k-SAT: Properties
of Balanced Formulas 181Y200

ANDREAS MEIER and VOLKER SORGE / Applying SAT Solving
in Classification of Finite Algebras 201Y235

ALESSANDRO ARMANDO, CLAUDIO CASTELLINI, ENRICO
GIUNCHIGLIA and MARCO MARATEA / The SAT-
based Approach to Separation Logic 237Y263

MARCO BOZZANO, ROBERTO BRUTTOMESSO, ALESSANDRO
CIMATTI, TOMMI JUNTTILA, PETER VAN ROSSUM,
STEPHAN SCHULZ and ROBERTO SEBASTIANI /
MATHSAT: Tight Integration of SAT and Mathematical
Decision Procedures 265Y293



TABLE OF CONTENTS

ENRICO GIUNCHIGLIA and TOBY WALSH / Satisfiability in the
Year 2005 1Y2

ATEET BHALLA, INÊS LYNCE, JOSÉ T. DE SOUSA and JOÃO
MARQUES-SILVA / Heuristic-Based Backtracking Relaxation
for Propositional Satisfiability 3Y24

GUOQIANG PAN and MOSHE Y. VARDI / Symbolic Techniques
in Satisfiability Solving 25Y50

MICHAEL ALEKHNOVICH, EDWARD A. HIRSCH and
DMITRY ITSYKSON / Exponential Lower Bounds for the
Running Time of DPLL Algorithms on Satisfiable Formulas 51Y72

STEFAN SZEIDER / Backdoor Sets for DLL Subsolvers 73Y88

JAN JOHANNSEN / The Complexity of Pure Literal Elimination 89Y95

JOHN THORNTON / Clause Weighting Local Search for SAT 97Y142

ALAN M. FRISCH, TIMOTHY J. PEUGNIEZ, ANTHONY
J. DOGGETT and PETER W. NIGHTINGALE / Solving
Non-Boolean Satisfiability Problems with Stochastic Local
Search: A Comparison of Encodings 143Y179

YACINE BOUFKHAD, OLIVIER DUBOIS, YANNET INTERIAN
and BART SELMAN / Regular Random k-SAT: Properties
of Balanced Formulas 181Y200

ANDREAS MEIER and VOLKER SORGE / Applying SAT Solving
in Classification of Finite Algebras 201Y235

ALESSANDRO ARMANDO, CLAUDIO CASTELLINI, ENRICO
GIUNCHIGLIA and MARCO MARATEA / The SAT-
based Approach to Separation Logic 237Y263

MARCO BOZZANO, ROBERTO BRUTTOMESSO, ALESSANDRO
CIMATTI, TOMMI JUNTTILA, PETER VAN ROSSUM,
STEPHAN SCHULZ and ROBERTO SEBASTIANI /
MATHSAT: Tight Integration of SAT and Mathematical
Decision Procedures 265Y293



J Autom Reasoning (2005) 35: 1–2
DOI 10.1007/s10817-006-9041-2

Satisfiability in the Year 2005

Enrico Giunchiglia · Toby Walsh

Published online: 31 August 2006
© Springer Science + Business Media B.V. 2006

Welcome to ‘SAT 2005,’ three special numbers of the Journal of Automated Reason-
ing devoted to Satisfiability in the Year 2005. This initiative follows on from SAT
2000, three special numbers of the journal (and an accompanying book) that were
published back in 2000. Five years seemed the right amount of time to us and to
Deepak Kapur, the editor in chief of the journal, to review the rapid progress being
made in propositional satisfiability (SAT). This area has continued to flourish over
the past decade and a half, with major advances in both theory and practice.

Propositional reasoning itself has had a long and distinguished history. In 1869,
William Stanley Jevon’s Logic Machine became the first machine to solve Boolean
logic problems faster than was possible by hand. In 1957, Allen Newell and Herb
Simon introduced the Logic Theory Machine to prove problems from Whitehead
and Russel’s Principia mathematica. In 1960, Martin Davis and Hillary Putnam
introduced their eponymous decision procedure for SAT (though, for space reasons,
it was quickly superseded by the modified procedure proposed by Martin Davis,
George Logemann, and Donald Loveland two years later). In 1971, Stephen Cook’s
proof that SAT is NP-complete placed SAT as the cornerstone of complexity theory.
More recently, SAT has been applied to solve practical problems in hardware
verification and elsewhere using highly optimized solvers.

The papers in SAT 2005 fall (not entirely neatly) into the following categories:
complete methods, local and stochastic search methods, random problems, appli-
cations, and extensions beyond the propositional. SAT 2005 is not a single special
issue, because of the large response we received to our call for papers. We received

E. Giunchiglia (B)
Dipartimento di Informatica, Sistemistica e Telematica, Università di Genova,
16145 Genova, Italy
e-mail: giunchiglia@unige.it

T. Walsh
National ICT Australia and Department of Computer Science and Engineering,
University of New South Wales, Sydney, NSW 2052, Australia
e-mail: tw@cse.unsw.edu.au



2 J Autom Reasoning (2005) 35: 1–2

24 submissions totaling more than 500 pages. As papers were judged entirely on their
quality (and not on any space considerations), we decided to accept 11 papers.

We thank again Deepak Kapur and Gail Pieper of JAR for inviting us to edit the
special issue and for all their help along the way. We also thank the authors of all
the submitted papers, and the many reviewers we called upon. We look forward to
speaking to you again in 2010.



Heuristic-Based Backtracking Relaxation for

Propositional Satisfiability

ATEET BHALLA*, INÊS LYNCE, JOSÉ T. DE SOUSA

and JOÃO MARQUES-SILVA
Technical University of Lisbon, IST/INESC-ID, Rua Alves Redol 9, 1000-029, Lisbon, PortugalR
e-mail: {ateet.bhalla, ines.lynce, jts, jpms}@inesc-id.pt

Abstract. In recent years backtrack search algorithms for propositional satisfiability (SAT) have

been the subject of dramatic improvements. These improvements allowed SAT solvers to

successfully solve instances with thousands or tens of thousands of variables. However, many new

challenging problem instances are still too hard for current SAT solvers. As a result, further

improvements to SAT technology are expected to have key consequences in solving hard real-

world instances. This paper introduces a new idea: choosing the backtrack variable using a

heuristic approach with the goal of diversifying the regions of the space that are explored during

the search. The proposed heuristics are inspired by the heuristics proposed in recent years for the

decision branching step of SAT solvers, namely, VSIDS and its improvements. Completeness

conditions are established, which guarantee completeness for the new algorithm, as well as for any

other incomplete backtracking algorithm. Experimental results on hundreds of instances derived

from real-world problems show that the new technique is able to speed SAT solvers, while aborting

fewer instances. These results clearly motivate the integration of heuristic backtracking in SAT

solvers.

1. Introduction

Propositional satisfiability is a well-known NP-complete problem, with theoret-

ical and practical significance and with extensive applications in many fields of

computer science and engineering, including artificial intelligence and electronic

design automation.

Current state-of-the-art SAT solvers incorporate sophisticated pruning

techniques as well as new strategies for organizing the search. Effective search

pruning techniques are based, among others, on no-good learning and

dependency-directed backtracking [24] and back-jumping [8], whereas recent

effective strategies introduce variations on the organization of backtrack search.

Examples of such strategies are weak-commitment search [25], search restarts

[12], and random backtracking [15, 20].

Advanced techniques applied to backtrack search SAT algorithms have

achieved remarkable improvements [2, 11, 18, 19], having been shown to be

* Author for correspondence.

Journal of Automated Reasoning (2005) 35: 3Y24
DOI: 10.1007/s10817-005-9005-y

# Springer 2005



crucial for solving hard instances of SAT obtained from real-world applications.

Moreover, and from a practical perspective, the most effective algorithms are

complete and so are able to prove unsatisfiabiltiy. Indeed, this is often the

objective in a large number of significant real-world applications.

Nevertheless, it is also widely accepted that local search has some advantages

compared to backtrack search. Although it is debatable which are the real ad-

vantages of local search (e.g., see [7]), one of them seems to be the use of search

restarts. Search restarts prevent the search form getting stuck in a locally optimal

partial solution. The advantage of search restarts has motivated the study of

approaches for relaxing backtracking conditions (while still ensuring complete-

ness). The key idea is to unrestrictedly choose the point to backtrack to, in order

to avoid thrashing, that is, exploring useless portions of search space corres-

ponding to very similar conflicting sets of assignments. Moreover, one can think

of combining different forms of relaxing the identification of the backtrack point.

In this paper, we propose to use heuristic knowledge to select the backtrack

point. Besides describing the generic heuristic backtracking search strategy, we

establish backtracking heuristics inspired by the most effective branching

heuristics proposed in recent years, namely, the VSIDS heuristic used by Chaff

[19] and the BerkMin’s branching heuristic [11].

Simply replacing deterministic backtracking with heuristic backtracking in

SAT algorithms has two major drawbacks: (1) the resulting algorithm is no

longer complete, and (2) an algorithm applying heuristic backtracking for every

backtrack step becomes very unstable.

To eliminate these drawbacks, we introduce the concept of unrestricted

backtracking algorithms. Each backtrack step is either a complete form of

backtracking (i.e., chronological or nonchronological backtracking) or an

incomplete form of backtracking (e.g., heuristic backtracking). Clearly an

unrestricted backtracking algorithm applying heuristic backtracking after every

k steps (with k > 1) and nonchronological backtracking every other steps is

more stable than an unrestricted backtracking algorithm applying heuristic

backtracking for every backtrack step. Moreover, we establish completeness

conditions for unrestricted backtracking algorithms. These conditions guarantee

completeness for any instantiation of the unrestricted backtracking algorithm.

This paper extends previous work. We first introduced our heuristic back-

tracking ideas in [3], where we showed that heuristic backtracking is superior to

other forms of unrestricted backtracking such as search restarts and random

backtracking. In [4], we introduced the completeness conditions and modified the

algorithm accordingly to make it complete. Some preliminary and promising

results have been presented in [3] and in [4]. This paper gives a more com-

prehensive description of the different forms of backtracking and integrates

heuristic backtracking within the framework of unrestricted backtracking. In

addition, we present improved experimental results that show that the benefits of

heuristic backtracking increase for hard-to-solve problem instances.

4 ATEET BHALLA ET AL.



We summarize the contributions of this paper as follows: (1) we introduce

heuristic backtracking algorithms; (2) we show that heuristic backtracking is a

special case of unrestricted backtracking, and we describe different approaches

for guaranteeing completeness of unrestricted backtracking; and (3) we give

experimental results that indicate that the proposed heuristic backtracking

algorithm is a competitive approach for solving real-world instances of SAT.

The remainder of this paper is organized as follows. The next section presents

definitions used throughout the paper. In Section 3 we briefly survey backtrack

search SAT algorithms. In Section 4 we introduce heuristic backtracking. Section

5 describes unrestricted backtracking algorithms for SAT and explains

how heuristic backtracking can be regarded as a special case or unrestricted

backtracking. In addition, we address completeness issues. Section 6 gives

experimental results, and Section 7 describes related work. In Section 8, we

conclude the paper and give directions for future research work.

2. Definitions

This section introduces the notational framework used throughout the paper.

Propositional variables are denoted x1 , . . . , xn and can be assigned truth values 0

(or F) or 1 (or T). The truth value assigned to a variable x is denoted by n(x).
(When clear from context we use x = nx, where nx Z {0,1}). A literal l is either a
variable xi or its negation Kxi. A clause w is a disjunction of literals and a CNF

formula 8 is a conjunction of clauses. A clause is said to be satisfied if at least

one of its literals assume value 1, unsatisfied if all of its literals assume value 0,

unit if all but one literal assume value 0 and unresolved otherwise. Literals with

no assigned truth value are said to be free literals. A formula is said to be

satisfied if all its clauses are satisfied, and is unsatisfied if at least one clause is

unsatisfied. A truth assignment for a formula is a set of pairs of variables and

their corresponding truth values. The SAT problem consists of deciding whether

there exists a truth assignment to the variables such that the formula becomes

satisfied.

SAT algorithms can be characterized as being either complete or incomplete.
Complete algorithms can establish unsatisfiablity if given enough CPU time;

incomplete algorithms cannot. Examples of complete and incomplete algorithms

are backtrack search and local search algorithms, respectively. In a search

context, complete algorithms are often referred to as systematic, whereas

incomplete algorithms are referred to as nonsystematic.

3. Backtrack Search SAT Algorithms

Over the years a large number of algorithms have been proposed for SAT, from

the original DavisYPutnam procedure [6], to recent backtrack search algorithms

[2, 11, 18, 19] and local search algorithms [23], among many others.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 5



The vast majority of backtrack search SAT algorithms are built on the

original backtrack search algorithm of Davis, Logemann, and Loveland [5].

The backtrack search algorithm is implemented by a search process that

implicitly enumerates the space of 2n possible binary assignments to the n
variables of the problem. Each different truth assignment defines a search path
within the search space. A decision level is associated with each variable

selection and assignment. (The notation x@d is used to denote that variable x has
been assigned at decision level d.) The first variable selection corresponds to

decision level 1, and the decision level is incremented by 1 for each new

decision assignments.j In addition, and for each decision level, the unit clause
rule [6] is applied. The iterated application of the unit clause rule is often

referred to as Boolean constraint propagation (BCP). If a clause is unit, then the

sole free literal must be assigned value 1 for satisfying the formula. In this case,

the values of the literal and of the associated variable are said to be implied.
Thus, assigned variables can be distinguished as decision variables and implied
variables.

In chronological backtracking, the search algorithm keeps track of which

decision assignments have been toggled. Given an unsatisfied clause (i.e., a

conflict or a dead end) at decision level d, the algorithm checks whether at the

current decision level the corresponding decision variable x has already been

toggled. If not, the algorithm erases the variable assignments that are implied by

the assignment on x, including the assignment on x, assigns the opposite value to
x, and marks decision variable x as toggled. In contrast, if the value of x has

already been toggled, the search backtracks to decision level d j 1.

Recent state-of-the-art SAT solvers utilize different forms of nonchronolog-

ical backtracking [2, 18, 19]. In these algorithms each identified conflict is

analyzed to identify the variable assignments that caused it, and a new clause

(no-good) is created to explain and prevent the identified conflicting conditions

from happening again. The created clause is then used to compute the backtrack

point as the most recent decision assignment represented in the recorded clause;

moreover, some of the (larger) recorded clauses are eventually deleted. Clauses

can be deleted opportunistically whenever they are no longer relevant for the

current search path [18].

Figure 1 illustrates the differences between chronological backtracking (CB)

and the nonchronological backtracking (NCB). On the top of the figure appears a

generic search tree (either possible in the context of CB or NCB). The search

is performed according to a depth-first search, and therefore the non-dashed

branches define the search space explored so far. On the one hand, and when a

conflict is found, the chronological backtracking algorithm makes the search

backtrack to the most recent, yet untoggled decision variable (see CB(a)). On the

j All assignments made before the first decision assignment correspond to decision level 0,
a preprocessing step.

6 ATEET BHALLA ET AL.



other hand, when nonchronological backtracking is applied, the backtrack point

is computed as the most recent decision assignment from all the decision

assignments represented in the recorded clause. In this case the search backtracks

to a higher level in the search tree (NCB(a)), skipping portions of the search tree

that are found to have no solution (see NCB(b)). From the final figures (CB(b)

and NCB(b)) it is plain to conclude that the number of nodes explored by NCB is

always equal or smaller than the number of nodes explored by CB.j (Observe

that no-goods can also reduce the search space because similar conflict paths of
the search space are avoided in the future).

4. Heuristic Backtracking

Heuristic backtracking consists of selecting the backtrack point in the search tree

using a heuristic function of the variables in the most recently recorded clause.

Different heuristic functions can be envisioned for applying heuristic back-

tracking. In this work we implemented three heuristics:

1. Plain heuristic: uses a simple heuristic function.

j Assuming that a fixed-order branching heuristic is used.

CB(b)

NCB(a)

NCB(b)

CB(a)

CB/NCB

Figure 1. Chronological backtracking (CB) vs nonchronological backtracking (NCB).

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 7



2. VSIDS-like heuristic: inspired by the VSIDS branching heuristic used by

Chaff [19].

3. BerkMin-like heuristic: inspired by the BerkMin’s branching heuristic [11].

In all cases the backtrack point is computed as the variable with the largest

heuristic metric. Next, we describe how the three approaches are implemented in

a heuristic backtracking algorithm.

4.1. PLAIN HEURISTIC BACKTRACKING

After a conflict (i.e., an unsatisfied clause) is identified, a conflict clause is

created. The conflict clause is then used for heuristically deciding which decision

assignment is to be toggled. Observe that when a conflict clause is created, all the

literals in the clause are assigned value 0. This fact motivates the search to

backtrack to the most recent decision level with implications on the conflict

clause.

Under the plain heuristic backtracking approach, the search is allowed to

backtrack to any decision level with implications on the literals of the conflict

clause. The backtrack point (i.e., decision level) is computed by selecting the

decision level with the largest number of occurrences (assigned or implied

literals) in the newly recorded clause. In addition, ties are broken randomly. This

approach contrasts with the usual nonchronological backtracking approach, in

which the most recent decision variable with implications on the conflict is

selected as backtrack point.

EXAMPLE 1. Suppose that plain heuristic backtracking is to be applied after

recording clause w = (x1 ¦ x3 ¦ Kx5 ¦ Kx9 ¦ x12). Also, suppose that each literal

in w has been assigned at a given decision level: w = (x1@10 ¦ x3@7 ¦ Kx5@8

¦ Kx9@7 ¦ x12@2). Clearly, the decision level with the largest number of

occurrences (in this case 2 occurrences) is decision level 7. Hence, plain heuristic

backtracking makes the search backtrack to level 7.

4.2. VSIDS-LIKE HEURISTIC BACKTRACKING

The second approach to heuristic backtracking is based in the variable-state

independent decaying sum (VSIDS) branching heuristic. The heuristic [19].

VSIDS was the first of a new generation of decision heuristics. This heuristic has

been used in Chaff, a highly optimized SAT solver. More than to develop a well-

behaved heuristic, the motivation in Chaff has been to design a fast heuristic. In

fact, one of the key properties of this strategies is the low computational

overhead, due to being independent of the variable state. As a result, the variable

metrics are updated only when there is a conflict.

8 ATEET BHALLA ET AL.



Similarly to Chaff, in our VSIDS-like backtracking heuristic we have a

counter for each literal. Each counter is initialized with the number of

occurrences of the literal in the formula. Moreover, each counter is incremented

when a new conflict clause containing the literal is added to the clause database.

In addition, after every 255 decisions, the metric values are divided by a constant

factor of 2, to give preference to variables occurring in the latest conflict clauses.

With our VSIDS-like backtracking heuristic, whenever a conflict occurs, the

literal in the just recorded clause with the highest metric is used to select the

backtrack point.

EXAMPLE 2. Suppose that the VSIDS-like heuristic backtracking is to be

applied after recording clause w = (x1@10 ¦ x3@7 ¦ Kx5@8 ¦ Kx9@7 ¦
x12@2). In addition, suppose that the VSIDS metric for a given variable x is

given by vsids(x) and that vsids(x1) = 45, vsids(x3) = 5, vsids(x5) = 94, vsids(x9) =
32 and vsids(x12) = 41. The literal in the just recorded clause with the highest

metric is x5. Hence, the VSIDS-like backtracking heuristic makes the search

backtrack to level 8, that is, the level where x5 was assigned.

4.3. BERKMIN-LIKE HEURISTIC BACKTRACKING

The third approach for implementing heuristic backtracking is inspired by the

BerkMin’s branching heuristic [11], which, in turn, has been inspired by the

VSIDS heuristic used in Chaff. In the BerkMin’s branching heuristic, the process

for updating the metrics of the literals is different. On the one hand, in Chaff

the current activity of a variable x is computed by counting the number of

occurrences of x in the conflict clause. On the other hand, in BerkMin a wider

set of clauses involved in causing the conflict is taken into account for computing

each variable’s activity. This procedure avoids overlooking some variables

that do not appear in the conflict clause, while actively contributing to the

conflict.

In our BerkMin-like backtracking heuristic, we increment the metrics of the

literals in all clauses that are directly involved in producing the conflict. The

metrics are updated during the process of conflict analysis, which can find all

clauses involved in producing the conflict by traversing an implication graph data

structure. This process finishes with the creation of the conflict clause. As in the

case of the VSIDS-like backtracking heuristic, the literal in the conflict clause

with the highest metric is used to select the backtrack point.

EXAMPLE 3. Consider again the clause given in Example 2: w = (x1@10 ¦
x3@7 ¦ Kx5@8 ¦ Kx9@7 ¦ x12@2). Also, suppose that the values given for

the BerkMin’s metric are given by function berkmin and that berkmin(x1)
= 31, berkmin(x3) = 38, berkmin(x5) = 2, berkmin(x9) = 15 and berkmin(x12) = 53.

The literal in the just recorded clause with the highest metric is x12. Hence,

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 9



BerkMin-like heuristic backtracking makes the search backtrack to level 2,

that is, the level where x12 has been assigned.

5. Unrestricted Backtracking

Heuristic backtracking can be viewed as a special case of unrestricted

backtracking [16]. While in unrestricted backtracking any form of backtrack

step can be applied, in heuristic backtracking the backtrack point is computed

from heuristic information, obtained from the current and past conflicts.

Unrestricted backtracking algorithms allow the search to unrestrictedly
backtrack to any point in the current search path whenever a conflict is reached.

Besides the freedom for selecting the backtrack point in the decision tree,

unrestricted backtracking allows the application of different types of backtrack

steps. Each backtrack step can be selected among chronological backtracking,

nonchronological backtracking, (e.g., search restarts, weak-commitment

search, random backtracking, or heuristic backtracking). More formally,

unrestricted backtracking (UB) allows the application of a sequence of backtrack

steps {BSt1, BSt2, BSt3, . . .} such that each backtrack step BSti can be a

chronological (CB), a nonchronological (NCB), or an incomplete form of

backtracking (IFB). This formalism allows capturing the backtracking search

strategies used by state-of-the-art SAT solvers [2, 11, 18, 19]. Indeed, if

the backtracking sequence consists of always applying chronological back-

tracking steps or always applying nonchronological backtracking steps, then we

capture the chronological and nonchronological backtracking search strategies,

respectively.

Unrestricted backtracking gives a unified representation for different back-

tracking strategies, which allows establishing general completeness conditions

for classes of backtracking strategies. This is more convenient than analyzing

each individual strategy, as has been done in [22, 25]. In what follows, we es-

tablish general completeness conditions for unrestricted backtracking, which are

valid for any special case of unrestricted backtracking; this includes heuristic

backtracking, the main thrust of this paper.

Figure 2 exemplifies how an incomplete form of backtracking can lead

to incompleteness, by providing possible sequels to the search process shown

in Figure 1. Three backtracking strategies are illustrated: chronological

(CB), nonchronological (NCB) and incomplete form of backtracking (IFB).

The search path that leads to the solution is marked with the letter S. For CB

and NCB the solution is found by orderly exploring the search space. With IFB

the search backtracks to any point, which may cause skipping the search

subspace that leads to the solution. Hence, something must be done to ensure the

correctness and completeness of an unrestricted backtracking algorithm that

includes incomplete backtracking steps. First, and similar to local search, we

have to assume that variable toggling in unrestricted backtracking is reversible.

10 ATEET BHALLA ET AL.



This means that the solution can be found later, even if the solution is skipped

during the search. Irreversible variable toggling would yield an incorrect or

incomplete algorithm. Second, with reversible variable toggling, we must ensure

that the algorithm terminates or otherwise it may loop forever in the search

space.

A number of techniques can be used to ensure the completeness of

unrestricted backtracking algorithms. These techniques are analyzed in [16]

and reviewed in the remainder of this section. Completeness techniques for

unrestricted backtracking can be organized in two classes:

Y Marking recorded clauses as nondeletable. This solution may yield an

exponential growth in the number of recorded clauses.j

Y Increasing a given constraint (e.g., the number of nondeletable recorded

clauses) in between applications of different backtracking schemes. This

solution can be used to guarantee a polynomial growth of the number

recorded clauses.

5.1. COMPLETENESS ISSUES

It has been explained above how unrestricted backtracking can yield

incomplete algorithms. Hence, it is important to be able to apply conditions

that guarantee the completeness for each newly devised SAT algorithm that

utilizes IFB Steps.

The results presented in this section generalize completeness results that have

been proposed in the past (for specific backtracking relaxations) to UB. We start

by establishing a few already known results, and then we establish additional

results for UB.

In what follows we assume the organization of a backtrack search SAT

algorithm as described earlier in this paper. The main loop of the algorithm

consists of selecting a decision variable, assigning the variable, and propagating

the assignment by using BCP. If an unsatisfied clause occurs (i.e., a conflict) the

NCB

S

IFB

S

?
S

CB

Figure 2. Comparing chronological backtracking (CB), nonchronological backtracking

(NCB) and incomplete forms of backtracking (IFB).

j In practice an exponential growth in the number of recorded clauses hardly ever arises.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 11



algorithm backtracks to a decision assignment that can be toggled.j Each time a

conflict is identified, all the current decision assignments define a conflict path in

the search tree. (We restrict the definition of conflict path solely with respect to

the decision assignments.) After a conflict is identified, we may apply a conflict
analysis procedure [2, 18, 19] to identify a subset of the decision assignments

that represent a sufficient condition for producing the same conflict. The subset

of decision assignments that is declared to be associated with a given conflict

is referred to as a conflict subpath. A straightforward conflict analysis procedure

consists of construction a clause with all the decision assignments in the conflict

path. In this case the created clause is referred to as a path-clause. Figure 3

illustrates these definitions. We can now established a few general results that

will be used throughout this section.

PROPOSITION 1. If an unrestricted backtracking search algorithm does not
repeat conflict paths, then it is complete.

Proof. Assume a problem instance with n variables. Observe that there are 2n

possible conflict paths. If the algorithm does not repeat conflict paths, then it

must necessarily terminate.

PROPOSITION 2. If an unrestricted backtracking search algorithm does not
repeat conflict subpaths, then it does not repeat conflict paths.

Proof. If a conflict subpath is not repeated, then no conflict path can contain

the same subpath, and so no conflict path can be repeated.

Figure 3. Search tree definitions.

j Without loss of generality, we assume that NCB uses irreversible variable toggling after

backtracking. In some recent algorithms this happens as an implication caused by the newly
derived conflict clause [19].

12 ATEET BHALLA ET AL.



PROPOSITION 3. If an unrestricted backtracking search algorithm does not
repeat conflict subpaths, then it is complete.

Proof. Given the two previous results, if no conflict subpaths are repeated,

then no conflict paths are repeated, and so completeness is obtained.

PROPOSITION 4. If the number of times an unrestricted backtracking search
algorithm repeats conflict paths or conflict subpaths is upperbounded by a
constant, then the backtrack search algorithm is complete.

Proof. We prove the result for conflict paths; the proof for conflict subpaths is

similar. Let M be a constant denoting an upper bound on the number of times a

given conflict path can be repeated. Since the total number of distinct conflict

paths is 2n, and since each can be repeated at most M times, then the total number

of conflict paths the backtrack search algorithm can enumerate is M � 2n, and so

the algorithm is complete.

PROPOSITION 5. For an unrestricted backtracking search algorithm following
holds:

1. If the algorithm creates a path clause for each identified conflict, then the

search algorithm repeats no conflict paths.

2. If the algorithm creates a conflict clause for each identified conflict, then the

search algorithm repeats no conflict subpaths.

3. If the algorithm creates a conflict clause (or a path clause) after everyM iden-

tified conflicts, then the number of times an unrestricted backtracking search

algorithm repeats conflict sub-paths (or conflict paths) is upper-bounded.

In all of the above cases, the search algorithm is complete.

Proof. Recall that the search algorithm always applies BCP after making a

decision assignment. Hence, if a clause describing a conflict has been recorded

and not deleted, BCP may trigger the same conflict with a different set of

decision assignments. As a result, conflict paths are not repeated. The same holds

true for conflict sub-paths. Since neither conflict paths nor conflict subpaths are

repeated, the search algorithm is complete (form Propositions 1 and 3). With

respect to creating (and recording) a conflict clause (or a path clause) after every

M identified conflicts, clearly the number of times a given conflict subpath (or

conflict path) is repeated is upper-bounded. Hence, using the results of

Proposition 4 completeness is guaranteed.

Observed that Proposition 5 holds independently of which backtrack step is

take each time a conflict is identified. Hence, as long as we record a conflict for

each identified conflict, any form of unrestricted backtracking yields a complete

algorithm. Less general formulations of this result have been proposed in the

recent past [9, 22, 25].

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 13



The results established so far guarantee completeness at the cost of recording

(and keeping) a clause for each identified conflict. Next, we propose and analyze

conditions for relaxing this requirement. As a result, we allow for some

clauses to be deleted during the search process and require only some specific

recorded clauses to be kept.j (We note that clause deletion does not apply to

chronological backtracking strategies and that existing clause deletion policies

for nonchronological backtracking strategies do not compromise the complete-

ness of the algorithm [18].) We also propose other conditions that do not require

specific recorded clauses to be kept.

PROPOSITION 6. An unrestricted backtracking algorithm is complete if it
records (and keeps) a conflict-clause for each identified conflict for which an IFB
step is taken.

Proof. At most 2n IFB steps can be taken because a conflict clause is recorded

for each identified conflict after an IFB step is taken. Hence, conflict subpaths

due to IFB steps cannot be repeated. Moreover, additional backtrack steps that

may be applied (CB and NCB) also ensure completeness. Hence, the resulting

algorithm is complete.

PROPOSITION 7. Given an integer constant M, an unrestricted backtracking
algorithm is complete if it records (and keeps) a conflict-clause after every M
identified conflicts for which an IFB step is taken.

Proof. The result immediately follows from the Propositions 5 and 6.

Under the conditions above, the number of recorded clauses grows linearly

with the number of conflicts after IFB steps. Thus the number of recorded clauses

is worst-case exponentially in the number of variables.

Other approaches to guarantee completeness involve increasing the value of

some constraint associated with the search algorithm. The following results

illustrate these approaches.

PROPOSITION 8. Suppose that an unrestricted backtracking strategy applies a
sequence of backtrack steps. If for this sequence the number of conflicts between
IFB steps is allowed to increase strictly after each IFB step, then the resulting
algorithm is complete.

Proof. If only CB or NCB steps are taken, then the resulting algorithm is

complete. When the number of conflicts in between IFB steps reaches 2n, the

algorithm is guaranteed to terminate.

We note that this result can be viewed as a generalization of the completeness

condition used in search restarts, which consists of increasing the backtrack

j We say that a recorded clause is kept provided it is prevented from being deleted during

the subsequent search.

14 ATEET BHALLA ET AL.



cutoff value after search restart [1].j Also observe that in this situation the

growth in the number of clauses can be made polynomial, provided clause

deletion is applied on clauses recorded form NCB and IFB steps.

The next result establishes conditions for guaranteeing completeness in

algorithms that opportunistically delete recorded clauses (as a result of an IFB

step). The idea is to increase the size of the recorded clauses that are kept after

each IFB step. Another approach is to increase the life-span of large recorded

clauses, by increasing the relevance-based learning threshold [2].

PROPOSITION 9. Suppose that an unrestricted backtracking strategy applies a
specific sequence of backtrack steps. If, for this sequence, either the size of the
largest recorded clause kept or the size of the relevance-based learning threshold
is strictly increased after each IFB step is taken, then the resulting algorithm is
complete.

Proof. When either the size of the largest recorded clause reaches value n or

the relevance-based learning threshold reaches value n, all recorded clauses will

be kept, and so completeness is guaranteed from Proposition 5.

Observe that for this last result the number of clauses can grow exponentially

with the number of variables. Moreover, we note that the observation regarding

the increase of the relevance-based learning threshold was first suggested in [19].

One final result addresses the number of times conflict paths and conflict

subpaths can be repeated.

PROPOSITION 10. Under the conditions of Proposition 8 and Proposition 9,

the number of times a conflict path or a conflict subpath is repeated is upper-

bounded.

Proof. The resulting algorithms are complete and thus known to terminate

after a maximum number of backtrack steps (which is constant for each

instance). Hence, the number of times a conflict path (or conflict subpath) can be

repeated is necessarily upper-bounded.

5.2. HEURISTIC BACKTRACKING UNDER THE UNRESTRICTED BACKTRACKING

FRAMEWORK

Unrestricted backtracking provides a framework for combining different forms

of backtracking. These forms of backtracking may be complete, incomplete, or a

combination of both. The completeness conditions established for unrestricted

backtracking hold regardless of the comprised forms of backtracking.

We have noted before that applying heuristic backtracking at every backtrack

step may lead to very unstable algorithms. Conversely, keeping all the recorded

clauses to avoid this instability may lead to a significant memory overhead.

j Given this condition, the resulting algorithm resembles iterative-deepening.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 15



Hence, the solution adopted for this problem is to combine heuristic backtracking

with other complete forms of backtracking.

In what follows we refer to heuristic backtracking as an instantiation of

unrestricted backtracking where incomplete heuristic backtracking steps are

combined with complete nonchronological backtracking steps. For each algo-

rithm, we will specify the frequency of the heuristic backtracking steps and the

heuristic used. As mentioned before, we have developed three backtracking

heuristics: the plain, VSIDS-like, and BerkMin-like backtracking heuristics.

6. Experimental Results

This section presents experimental results of applying heuristic backtracking

to different classes of problem instances. We compare heuristic backtracking

with nonchronological backtracking and nonchronological backtracking com-

bined with search restarts [12], one of the most effective backtracking relaxation

schemes known to date. Search restarts are now part of the most competitive

backtrack search SAT algorithms [19, 11], and our goal here has been to de-

monstrate that heuristic backtracking is a more competitive form of backtracking

relaxation.

The algorithms have been experimentally evaluated by using the JQuest2

SAT solver [17]. JQuest2 is a competitive solver and has been ranked among the

top solvers in the industrial category in the SAT 2003 competition.j JQuest2 has

been implemented in Java for providing an integrated framework for rapid

prototyping of SAT algorithms.

It offers a significantly faster development time for testing new ideas in SAT

algorithms, but its overall performance is slower than a C or C++ implementation

because of the overhead associated with the Java virtual machine. It has been

demonstrated that JQuest2 is slower than Chaff by an average factor of 2 [17].

The CPU time limit for each instance was set to 104 s. All experiments were run

on the same P4/1.7 Ghz/1 GByte of RAM Linux machine.

Different SAT algorithm prototypes have been implemented and compared.

The algorithms differ only in the unrestricted backtracking strategy applied. Five

backtracking strategies are compared:

1. Plain heuristic backtracking.

2. VSIDS-like heuristic backtracking.

3. BerkMin-like heuristic backtracking.

4. Search restarts.

5. Nonchronological backtracking.

All algorithms use the VSIDS decision branching heuristic. In choosing a

decision or backtrack variable, a slight randomization is used to select among the

j http://www.satlive.org/SATCompetition/2003/.

16 ATEET BHALLA ET AL.



variables with the best metrics provided by the different heuristics. Combining

the values of the metrics with a certain degree of randomization is known to

produce good results.

The algorithms have been applied to 14 classes of problem instances

containing 320 problem instances in total. In NCB, a nonchronological backtrack

step is performed every step. In the other algorithms is defined as follows: an

incomplete form of backtracking step (HB or restarts) is performed after every

104 + i � 103 backtracks, where i is incremented every time an IFB step is

performed. The increase of constant i and the fact that conflict derived clauses

are marked undeletable guarantee the completeness of the algorithms.

Table I shows the results obtained for each class of instances. #I denotes the
number of problem instances, Dec denotes the average number of decision nodes

per instance, Time denotes the average CPU time per instance, and X denotes the

number of aborted instances. In addition, each column indicates a different form

of backtracking relaxation:

Y HB(P) indicates the plain heuristic backtracking algorithm is applied after 104

+ i � 103 backtracks, where i is incremented every time a HB step is taken.
Y HB(V) indicates the VSIDS-like heuristic backtracking algorithm is

applied after 104 + i � 103 backtracks, where i is incremented every time

a HB step is taken.
Y HB(B) indicates the BerkMin-like heuristic backtracking algorithm is

applied after 104 + i � 103 backtracks, where i is incremented every time a

HB step is taken.
Y RST indicates that search restarts are applied after 104 + i � 103 backtrack,

where i is incremented every time a search restart is taken.
Y NCB indicates nonchronological backtracking is applied in every back-

track step.

From the results in Table I several observations and comments can be made.

HB algorithms abort fewer instances. An instance is aborted whenever the

memory or CPU time constraint is reached. In these experiments all instance

abortions have been caused by memory exhaustion, which shows that fewer

clauses using HB as compared to search restarts. A possible explanation is that

our heuristics are more likely to reuse information provided by earlier conflicts

than is the search restarts algorithm, which is more prone to encounter new

conflict clauses after each restart. Equivalently, one can say that HB favors a

more local search rather than search restarts.

The nonchronological backtracking algorithm is not a competitive approach,

in terms of both decisions and CPU time. This is true when compared with any of

the other four algorithms. In addition, the search restarts algorithm seems to be

the second worst approach, although more competitive than the nonchronological

backtracking algorithm. The computed average speedup against the nonchrono-

logical backtracking algorithm for the set of instances used is 1.95�.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 17



T
ab

le
I.

P
er
fo
rm

an
ce

o
f
d
if
fe
re
n
t
al
g
o
ri
th
m
s.

B
en
ch
m
ar
k
s

#
I

H
B
(P
)

H
B
(V

)
H
B
(B
)

R
S
T

N
C
B

D
ec

T
im

e
X

D
ec

T
im

e
X

D
ec

T
im

e
X

D
ec

T
im

e
X

D
ec

T
im

e
X

b
m
c-
b
ar
re
l

8
1
3
0
7
4
9
2

4
0
7
0
.2
2

0
1
0
1
3
7
8
7

1
8
1
9
.1
1

0
5
8
4
6
8
0

7
3
5
.6
1

0
1
0
3
1
2
9
7

2
3
9
7
.8
1

0
1
3
3
9
7
9
8

4
7
8
9
.3
6

0

b
m
c-
q
u
eu
ei
n
v
ar

1
0

8
4
7
8
4

3
3
.0
2

0
8
5
6
6
6

4
2
.0
4

0
6
9
7
5
8

2
5
.8
6

0
6
6
7
1
3

2
0
.9
3

0
1
1
7
8
2
3

6
9
.3
4

0

b
m
c-
lo
n
g
m
u
lt

1
6

1
1
1
2
4
6
7

5
8
6
8
.8
7

3
9
3
7
6
4
9

3
0
8
8
.8
3

3
9
4
6
8
1
3

4
2
7
6
.7
7

3
1
1
7
7
4
6
3

7
8
7
3
.1
9

5
1
4
9
0
6
6
7

8
1
5
6
.6
9

5

ss
s-
sa
t-
1
.0

1
0
0

3
4
7
0
7
5
0

3
0
1
8
.8
3

0
3
0
0
5
8
6
8

1
7
8
5
.3
8

0
1
4
8
6
2
7
4

8
7
7
.5
8

0
3
1
4
2
0
7
8

2
4
2
5
.2
7

0
3
5
2
7
7
1
7

4
0
2
9
.9
4

0

ss
s-
1
.0

4
8

9
3
9
5
3
5

6
5
8
.8
7

0
6
8
1
0
2
5

1
9
9
.6
8

0
4
6
7
6
5
0

9
3
.9
7

0
7
3
6
8
5
1

4
0
8
.5
6

0
9
4
5
5
8
8

1
1
6
7
.8
2

0

ss
s-
1
.0
a

9
1
9
1
8
3
8

2
3
0
.4

0
1
7
6
2
2
7

1
0
8
.7
7

0
9
8
2
1
7

3
7
.5

0
1
9
8
3
6
3

4
5
9
.6
8

0
2
6
0
3
8
9

8
5
8
.8
7

0

fv
p
-u
n
sa
t.
1
.0

4
1
9
1
3
0
0

1
8
0
.9
3

1
1
9
6
6
7
1

2
1
7
.2
8

1
1
0
2
6
5
7

3
8
.9
4

1
1
6
7
7
1
4

1
0
9
.3
1

1
2
2
2
7
2
5

3
9
5
.1
8

1

q
g

2
2

4
0
2
2
5
7

1
7
6
2
.7
5

0
3
8
1
7
9
0

1
3
4
4
.6
9

0
2
3
6
2
5
8

5
7
7
.6
3

0
2
8
3
4
5
9

9
5
0
.0
8

0
4
9
4
6
1
6

2
8
2
9
.9
4

0

B
ei
ji
n
g

1
6

5
2
2
8
8
4

5
0
5
5
.5
6

2
5
0
9
7
6
4

4
0
6
3
.4
2

2
5
1
7
4
6
2

4
9
0
6
.9
4

2
5
2
3
8
4
9

5
2
8
4
.3
8

2
5
8
5
1
9
4

5
6
5
3
.0
4

2

eq
u
iv
-c
h
ec
k
in
g

2
5

2
3
1
7
4
9
4

2
0
3
5
.2
6

2
2
3
5
5
5
0
8

2
2
8
2
.4
9

2
9
1
3
8
3
5

1
1
0
1
.2
6

2
2
8
5
3
2
8
0

3
4
6
7
.2
4

2
3
3
0
7
2
0
3

4
1
6
3
.9
9

2

p
ar
1
6

1
0

7
4
6
4
1

4
1
.1
2

0
7
2
6
0
7

2
7
.8

0
5
6
6
1
9

1
8
.1

0
1
1
1
2
2
8

7
9
.9
5

0
1
2
2
6
1
4

1
0
6
.5
9

0

d
es
-e
n
cr
y
p
ti
o
n

3
2

5
3
3
5
2
0

3
8
0
1
.0
9

2
5
1
2
6
4
0

3
1
9
4
.0
6

2
4
8
0
8
1
2

2
8
8
5
.3
9

2
5
7
8
1
2
8

5
0
0
5
.2
6

2
7
8
4
2
0
6

9
0
5
5
.6
2

2

sa
tp
la
n
_
sa
t

1
1

7
8
7
7
7

7
9
.4
5

0
4
7
4
0
3

3
3
.1

0
2
8
6
8
2

2
7
.0
5

0
5
8
4
1
2

7
1
.4
2

0
1
2
7
0
1
7

1
0
2
.3
9

0

sa
tp
la
n
_
u
n
sa
t

9
3
9
0
4
2

6
5
.5

0
2
7
3
7
1

4
1
.2

0
1
0
0
2
1

2
4
.3

0
5
1
5
0
2

8
9
.5
4

0
5
6
7
8
0

9
5
.6
8

0

18 ATEET BHALLA ET AL.



The plain heuristic backtracking algorithm performed slightly better on

average than the search restarts algorithm. Although these results are not very

conclusive, they seem to indicate that using some heuristic information when

performing backtracking is better than not using any information at all, as is the

case of search restarts. Moreover, in the next table it is shown that, when applied

to some instances, the plain backtracking heuristic is significantly superior to

search restarts and nonchronological backtracking.

The VSIDS-like heuristic backtracking algorithm performed better than the

search restarts algorithm for most of the instances, in terms of both the number of

decisions and CPU time, even though slower in performance on some test

instances. Its computed average speedup against the search restarts algorithm for

the set of instances used is 1.77�. (Note that this is a lower bound of the average

speedup, since the instances aborted by the search restarts algorithm are a

superset of the instances aborted by the VSIDS-like heuristic backtracking

algorithm; the aborted instances have not been taken into account in computing

the average speedup).

The BerkMin-like heuristic backtracking algorithm performed better than

the VSIDS-like heuristic backtracking algorithm. This result is consistent

with the fact that the BerkMin decision branching heuristic is generally

superior to the VSIDS decision backtracking heuristic. Its computed average

speedup against the search restarts algorithm for the set of instances used is

3.32�.
Given the large number of instances tested, these results clearly demonstrate

the backtracking heuristic can speed up execution time for the classes of

problems tested. It is also remarkable that their effect is similar to the effect of

decision branching heuristic: if a heuristic A is better than a heuristic B for

decision branching, then A is also better than B for backtracking.

The result presented in Table I are significantly better than the preliminary

results previously presented in [4]. The reason is that we eliminated many easy-

to-solve instances from each problem class. These instances do not benefit from

heuristic backtracking or search restarts because they can be solved quickly

before a significant number of IFB steps are applied, if any. Large instances do

benefit from HB or restarts because these techniques help get out of dead-ends in

the search tree. Hence, they should be applied infrequently. In our studies we

concluded that, similar to search restarts, HB is best when applied once in every

104 backtracks. More frequent applications cause the algorithms to wander

without focusing in regions of search space that need a more thorough

exploration. When applied infrequently, HB allows finding a solution or proving

unsatisfiability using a significantly lower number of decisions.

To show that the performance of the heuristics improve with the hardness of the

problem instances, we manually selected a set of 18 harder-to-solve instances.

The results in Table II show that for the set of harder-to-solve instances the

benefits of heuristic backtracking are more visible. The three HB algorithms

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 19



performs better than the search restarts algorithm and nonchronological

backtracking, which aborted two of the instances (marked with *).

Clearly, the search restarts algorithm performs better than the nonchronolog-

ical backtracking algorithm, in terms of both the number of decisions and CPU

time.

The plain heuristic backtracking algorithm performed better than both the

search restarts algorithm and the nonchronological backtracking algorithm for

most of the instances. This is true both in terms of the number of decisions and

CPU time.

The VSIDS-like heuristic backtracking algorithm performed better than the

search restarts algorithm, both in terms of the number of decisions and CPU

time. Its average speed-up has been computed as greater than 2.62�.
The BerkMin-like heuristic backtracking algorithm was again the best of the

three backtracking algorithms. Its average speed-up against the search restarts

algorithm has been computed as greater than 9.63�.
As can be concluded from the experimental results, heuristic backtracking can

yield significant savings in CPU time, allows significant reductions in the number

of decision nodes and also allows for a smaller number of instances to be

aborted. This is true for several of the classes of problem instances analyzed.

7. Related Work

Dependency-directed backtracking and no-good learning were originally pro-

posed by Stallman and Sussman in [24] in the area of truth maintenance systems.

In the area of constraints satisfaction problems (CSPs), the topic was

independently studied by J. Gaschnig [8] and others (see, e.g., [21]) as different

forms of backjumping.

The introduction of relaxations in the backtrack steps is also related to

dynamic backtracking [9]. Dynamic backtracking establishes a method by which

backtrack points can be moved deeper in the search tree. This avoids the

unneeded erasing of the amount of search that has been done thus far. The

objective is to find a way to directly Berase^ the value assigned to a variable as

opposed to backtracking to it, moving the backjump variable to the end of the

partial solution in order to replace its value without modifying the values of the

variables that currently follow it. More recently, Ginsberg and McAllester

combined local search and dynamic in an algorithm that enables arbitrary search

movement [10], starting with any complete assignment and evolving by flipping

values of variables obtained from the conflicts.

Local search and dynamic backtracking have also been combined by

Prestwich in the Constrained Local Solver (CLS) [20]. CLS is constructed by

randomizing the backtracking component of a systematic algorithm: that is,

allowing backtracking to occur on arbitrarily chosen variables. The new

algorithm has the drawback of being incomplete.

20 ATEET BHALLA ET AL.



T
ab

le
II
.

P
er
fo
rm

an
ce

o
f
d
if
fe
re
n
t
al
g
o
ri
th
m
s
o
n
in
d
iv
id
u
al

in
st
an
ce
s

B
en
ch
m
ar
k
s

In
st
an
ce

H
B
(P
)

H
B
(V

)
H
B
(B
)

R
S
T

N
C
B

D
ec

T
im

e
D
ec

T
im

e
D
ec

T
im

e
D
ec

T
im

e
D
ec

T
im

e

b
m
c

b
ar
re
l9

8
6
9
8
9
6

3
3
3
2
.6
8

7
8
0
6
5
0

2
5
4
2
.1
7

2
3
8
5
6
6

3
9
1
.1

7
0
7
0
3
3

1
9
0
3
.5
8

7
9
0
0
2
9

2
6
6
0
5
1

b
m
c

lo
n
g
m
u
lt
1
0

2
2
9
3
7
3

1
7
2
0
.5
7

2
2
0
4
3
2

1
2
3
4
.4

1
8
8
6
5
4

5
7
3
.4
1

*
*

*
*

b
m
c

lo
n
g
m
u
lt
1
5

2
8
4
6
5
8

2
5
0
0
.6
1

1
7
5
4
2
2

6
7
2
.6
8

2
1
9
0
8
7

1
4
8
7
.7
7

*
*

*
*

ss
s-
sa
t-
1
.0

2
d
lx
_
..
.b
u
g
0
5
6

5
6
1
9
7

3
4
.8
8

5
5
2
4
0

3
1
.8
6

2
4
5
6
5

1
9
.4
8

6
0
3
4
5

4
8
.2
3

6
3
3
0
3

5
6
.3
2

ss
s.
1
.0
a

d
lx
2
_
..
.b
u
g
5
4

2
9
7
4
4

3
6
.7
1

2
4
4
6
6

3
3
.2
1

2
3
0
4

1
1
.6
0

3
6
5
9
6

5
8
.9
4

3
5
0
1
8

5
3
.0
1

ss
s.
1
.0

d
lx
2
_
cl

1
7
1
4
4

9
.6
5

1
2
8
8
2

4
.9
2

1
3
2
0
6

6
.9
5

3
3
2
4
4

1
4
.1
3

3
6
7
8
1

1
5
.9
8

fv
p
-u
n
sa
t.
1
.0

2
d
lx
_
ca
_
..
.b
p
_
f

3
6
1
5
6

3
0
.3
6

3
2
2
9
4

1
9
.2
4

3
1
1
8
1

1
5
.4
2

4
2
0
2
7

4
0
.4
7

4
7
9
8
2

8
3
.6
7

q
g

q
g
2
-0
8

1
3
7
1
0
2

7
6
2
.7
2

3
6
2
6
5

4
7
.4
8

4
1
4
5
5

2
7
8
.5
2

5
8
2
7
1

5
5
4
.2
3

6
7
9
5
4

6
0
8
.5
9

q
g

q
g
5
-1
3

9
7
0
8
6

2
9
8
.6
7

1
0
3
8
9
1

7
7
1
.3
2

7
7
6
3
4

1
8
6
.8
1

5
1
8
3
9

1
1
6
.4
6

8
0
3
7
0

2
1
7
.3
6

eq
u
iv
-c
h
ec
k
in
g

c7
5
5
2

1
9
8
2
4
0

9
5
.9
2

2
4
3
1
0
1

1
4
5
.4
8

1
5
1
0
2
1

7
5
.9
3

3
1
3
5
9
2

2
9
3
.6
1

3
1
8
8
3
1

4
6
1
.3
4

eq
u
iv
-c
h
ec
k
in
g

c7
5
5
2
-s

2
9
5
6
8
9

1
5
8
.5
2

4
0
0
8
7
5

3
4
7
.8
4

1
7
5
0
7
0

5
8
.9
1

4
1
1
6
2
6

5
9
4
.2
4

4
4
4
8
8
8

8
6
7
.9
6

eq
u
iv
-c
h
ec
k
in
g

c3
5
4
0
_
b
u
g

2
2
1
1

1
.3
4

2
5
6
0

2
.6
9

5
5
7

0
.3
8

3
3
7
8

4
.9
5

8
4
7
2

1
5
.2
4

d
es
-e
n
cr
y
p
ti
o
n

cn
f-
r3
-b
1
-k
1
.1

9
9
4
3

6
.2
5

1
0
9
3
7

9
.3

4
7
1
6

1
.1
1

1
3
0
6
8

1
8
.7
5

1
3
9
6
0

2
1
.6
5

d
es
-e
n
cr
y
p
ti
o
n

cn
f-
r3
-b
1
-k
2
.2

2
2
7
5

1
.1
8

5
5
6
6

2
.8
2

1
2
2
0

0
.7
6

7
7
9
2

3
.3
6

8
0
4
2

4
.7
6

p
ar
1
6

p
ar
1
6
-1
-c

8
8
6
6

3
.6
5

8
0
1
9

2
.7
0

7
2
7
3

1
.3

1
1
1
4
3

1
8
.8

2
1
7
7
3

2
5
.7
4

p
ar
1
6

p
ar
1
6
-4

1
9
6
4

2
.4

1
1
1
7

1
.6
5

8
8
7

0
.4

3
3
7
8

3
.5
5

3
3
8
6

4
.4
8

sa
tp
la
n
_
sa
t

b
w
-l
ar
g
e.
d

3
4
8
9
0

6
2
.1
3

2
2
4
3
8

2
7
.8
4

1
8
8
0
5

1
7
.0
9

3
0
8
5
5

5
3
.3
7

4
9
1
1
0

8
2
.5
5

sa
tp
la
n
_
u
n
sa
t

lo
g
is
ti
cs
.c

5
4
5
8

3
.9

5
0
1
8

2
.6
1

4
2
1
1

1
.0
2

5
3
3
4

3
.4

5
7
5
4

6
.4
9

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 21



In weak-commitment search [25], the algorithm constructs a consistent partial

solution but commits to the partial solution weakly. In weak-commitment search,

whenever a conflict is reached, the whole partial solution is abandoned, in

explicit contrast to standard backtracking algorithm where the most recently

added variable is removed form the partial solution.

Moreover, search restarts have been proposed and shown effective for hard

instances of SAT [12]. The search is repeatedly restarted whenever a cutoff value

is reached. In [1], search restarts were jointly used with learning for solving hard

real-world instances of SAT. This latter algorithm is complete because the

backtrack cutoff value increases after each restart. One additional example of

backtracking relaxation is described in [22], which is based on attempting to

construct a complete solution, that restarts each time a conflict is identified. More

recently, highly optimized complete SAT solvers [11, 19] have successfully

combined nonchronological backtracking and search restarts, again obtaining

remarkable improvements in solving real-world instances of SAT.

Other algorithms are known for performing an overall local search while

using systematic search to prune the search space. For example, Jussien and

Lhomme introduced the path-repair algorithm for CSP [14], which adds domain

filtering techniques and no-good learning to local search. Furthermore, Hirsch

and Kojevnikov introduced the UnitWalk SAT solver [13], which combines the

iterative application of the unit clause rule with local search.

8. Conclusions and Future Work

This paper proposes the utilization of heuristic backtracking in backtrack search

SAT solvers. The proposed algorithm, based on heuristic knowledge, is presented

in the context of a backtracking-based SAT algorithm, which is currently the

most successful class of general-purpose SAT algorithms especially for real-

world applications. The most well-known branching heuristic used in state-of-

the-art SAT solvers were adapted to the backtrack step of SAT solvers. The

experimental results illustrate the usefulness of heuristic backtracking and realize

the potential of this technique on practical examples, especially those coming

from real-world applications.

The main contributions of this paper can be summarized as follows:

1. A new heuristic backtracking search SAT algorithm is proposed that

heuristically selects the point to backtrack to.

2. The proposed algorithm is shown to be a special case of unrestricted

backtracking, and different approaches for ensuring completeness are

described.

3. Experimental results indicate that significant savings in search effort can be

obtained for different organizations of the proposed heuristic backtrack

search algorithm.

22 ATEET BHALLA ET AL.



In fact, hundreds of problems instances have been analyzed in this paper,

where heuristic backtracking algorithms have been compared to a state-of-the-art

SAT solver algorithm. The only difference between the new algorithms and the

reference SAT solver is the backtracking step: the new algorithms apply heuristic

backtracking steps instead of search restarts, the best form of incomplete

backtracking known to date.

Three backtracking heuristics have been tested: a plain heuristic that uses

information from the conflict-clause, a VSIDS-like heuristic, and a BerkMin-like

heuristic. Our results show that the better the heuristic is for decision branching,

the more useful it is for backtracking, which is a consistent result.

In a set of 320 instances, the best backtracking heuristic (BerkMin’s) shows

an average speedup of about 3.5� as compared with the search restarts

algorithm. For a set of 18 harder-to-solve instances, the heuristic backtracking

algorithms have been able to solve all of them, while the search restarts

algorithm and nonchronological backtracking aborted two instances.

The heuristic backtracking procedure developed in this work is now ready to

be incorporated in SAT solvers, with guaranteed performance improvement.

For future work, a more comprehensive experimental evaluation is required

for combining different forms of decision heuristics and backtracking relaxation

algorithms, thus motivating the utilization of multiple search strategies in

backtrack search SAT algorithms.

Acknowledgements

This work is partially supported by the European research project IST-2001-

34607 and by Fundação para a Ciência e Tecnologia under research projects

POSI/CHS/34504/2000, POSI/SRI/41926/2001 and POSI/EIA/61852/2004.

References

1. Baptista, L. and Marques-Silva, J. P.: Using randomization and learning to solve real-world

instances of satisfiablility, in R. Dechter (ed.), Proceedings of the International Conference of
Principles and Practice of Constraint Programming, Vol. 1894 of Lecture Notes in Computer

Science, 2000, pp. 489Y494.
2. Bayardo Jr., R. and Scharg, R.: Using CSP look-back techniques to solve real-world SAT

instances, in Proceedings of the National Conference on Artificial Intelligence, 1997,

pp. 203Y208.
3. Bhalla, A., Lynce, I., de Sousa, J. and Marques-Silva, J.: Heuristic backtracking algorithms

for SAT, in Proceedings of the International Workshop of Microprocessor Test and
Verification, 2003, pp. 69Y74.

4. Bhalla, A., Lynce, J., de Sousa, J. and Marques-Silva, J. P.: Heuristic-based backtracking for

propositional satisfiability, in F. Moura-Pires and S. Abreu (eds.), Proceedings of the
Portuguese Conference on Artificial Intelligence, Vol., 1894 of Lecture Notes in Artificial

Intelligence, 2003, pp. 116Y130.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY 23



5. Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem proving,

Commun. Assoc. Comput. Mach. 5 (1962), 394Y397.
6. Davis, M. and Putnam, H.: A computing procedure for quantification theory, J. Assoc.

Comput. Mach. 7 (1960), 201Y215.
7. Freuder, E. C., Dechter, R., Ginsberg, M. L., Selman, B. and Tsang, E.: Systematic versus

stochastic constraint satisfaction, in Proceedings of the International Joint Conference on
Artificial Intelligence, 1995, pp. 2027Y2032.

8. Gaschnig, J.: Performance Measurement and Analysis of Certain Search Algorithms, PhD

thesis, Carnegie-Mellon University, Pittsburgh, PA.

9. Ginsberg, M. L.: Dynamic backtracking, J. Artif. Intell. Res. 1 (1993), 25Y46.
10. Ginsberg, M. L. and McAllester, D.: GSAT and dynamic backtracking, in Proceedings of the

International Conference of Principles of Knowledge and Reasoning, 1994, pp. 226Y237.
11. Goldberg, E. and Nonikov, Y.: BerkMin: A Fast and Robust SAT-Solver, in Proceedings of

the Design and Test in Europe Conference, 2002, pp. 142Y149.
12. Games, C. P., Selman, B. and Kautz, H.: Boosting combination search through randomiza-

tion, in Proceedings of the National Conference on Artificial Intelligence, 1998, pp. 431Y437.
13. Hirsch, E. A. and Kojevnikov, A.: Solving Boolean satisfiability using local search guided by

unit clause elimination, in Proceedings of the International Conference on Principles and
Practice of Constraint Programming, 2001, pp. 605Y609.

14. Jussien, N. and Lhomme, O.: Local search with constraint propagation and conflict-based

heuristics, in Proceedings of the National Conference on Artificial Intelligence, 2000,

pp. 169Y174.
15. Lynce, I., Baptista, L. and Marques-Silva, J. P.: Stochastic systematic search algorithm for

satisfiability, in Proceedings of the LICS Workshop on Theory and Applications of
Satisfiability Testing, 2001, pp. 1Y7.

16. Lynce, I. and Marques-Silva, J. P.: Complete unrestricted backtracking algorithms for

satisfiability, in Proceedings of the International Symposium on Theory and Applications of
Satisfiability Testing, 2002, pp. 214Y221.

17. Lynce, I. and Marques-Silva, J. P.: On implementing more efficient SAT data structures, in

Proceedings of the International Symposium on Theory and Applications of Satisfiability
Testing, 2003, pp. 510Y516.

18. Marques-Silva, J. P. and Sakallah, K. A., GRASPVA search algorithm for propositional

satisfiability, IEEE Trans. Comput. 48(5) (1999), 506Y521.
19. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Engineering an efficient

SAT solver, in Design Automation Conference, 2001, pp. 530Y535.
20. Prestwich, S.: A hybrid search architecture applied to hard random 3-SAT and low-

autocorrelation binary sequences, in R. Dechter (ed.), Proceedings of the International
Conference on Principles and Practice of Constraint Programming, Vol. 1894 of Lecture

Notes in Computer Science, 2000, pp. 337Y352.
21. Prosser, P.: Hybrid algorithms for the constraint satisfaction problems, Comput. Intell. 9(3)

(1993), 268Y299.
22. Richards, E. T. and Richards, B.: Non-systematic search and no-good learning, J. Autom.

Reason. 24(4) (2000), 483Y533.
23. Selman, B. and Kautz, H.: Domain-independent extensions to GSAT: Solving large

structured satisfiability problems, in Proceedings of the International Joint Conference on
Artificial Intelligence, 1993, pp. 290Y295.

24. Stallman, R. M. and Sussman, G. J.: Forward reasoning and dependency-directed back-

tracking in a system for computer-aided circuit analysis, Artif. Intell. 9 (1977), 135Y196.
25. Yokoo, M.: Weak-commitment search for solving satisfaction problems, in Proceedings of

the National Conference on Artificial Intelligence, 1994, pp. 313Y318.

24 ATEET BHALLA ET AL.



Symbolic Techniques in Satisfiability Solvingj

GUOQIANG PAN and MOSHE Y. VARDI
Department of Computer Science, Rice University, Houston, TX, USA.
e-mail: {gqpan, vardi}@cs.rice.edu

Abstract. Recent work has shown how to use binary decision diagrams for satisfiability solving.

The idea of this approach, which we call symbolic quantifier elimination, is to view an instance of

propositional satisfiability as an existentially quantified proposition formula. Satisfiability solving

then amounts to quantifier elimination; once all quantifiers have been eliminated, we are left with

either 1 or 0. Our goal in this work is to study the effectiveness of symbolic quantifier elimination

as an approach to satisfiability solving. To that end, we conduct a direct comparison with the

DPLL-based ZChaff, as well as evaluate a variety of optimization techniques for the symbolic

approach. In comparing the symbolic approach to ZChaff, we evaluate scalability across a variety

of classes of formulas. We find that no approach dominates across all classes. While ZChaff

dominates for many classes of formulas, the symbolic approach is superior for other classes of

formulas. Once we have demonstrated the viability of the symbolic approach, we focus on

optimization techniques for this approach. We study techniques from constraint satisfaction for

finding a good plan for performing the symbolic operations of conjunction and of existential

quantification. We also study various variable-ordering heuristics, finding that while no heuristic

seems to dominate across all classes of formulas, the maximum-cardinality search heuristic seems

to offer the best overall performance.

Key words: satisfiability, binary decision diagram, symbolic decision procedure.

1. Introduction

Propositional-satisfiability solving has been an active area of research throughout

the past 40 years, starting from the resolution-based algorithm in [24] and the

search-based algorithm in [23]. The latter approach, referred to as the DPLL

approach, has since been the method of choice for satisfiability solving. In the

past ten years, much progress has been made in developing highly optimized

DPLL solvers, leading to efficient solvers such as ZChaff [45] and BerkMin [33],

all of which use advanced heuristics in choosing variable splitting order, in

performing efficient Boolean constraint propagation, and in conflict-driven

learning to prune unnecessary search branches. These solvers are so effective

that they are used as generic problem solvers, where problems such as bounded

j A preliminary version of the paper was presented in SAT’04. Supported in part by NSF

grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435, IIS-9978135, EIA-0086264,

ANI-0216467, and by BSF grant 9800096.

Journal of Automated Reasoning (2005) 35: 25Y50
DOI: 10.1007/s10817-005-9009-7

# Springer 2005



model checking [8], planning [39], and scheduling [20] are typically solved by

reducing them to satisfiability problems.

Another successful approach to propositional reasoning is that of decision

diagrams, which are used to represent propositional functions. An instance of the

approach is that of ordered binary decision diagrams (BDDs) [12], which are used

successfully in model checking [14] and planning [17]. A BDD representation

also enables easy satisfiability checking, which amounts to deciding whether it is

different from the empty BDD [12]. Since decision diagrams usually represent

the set of all satisfying truth assignments, they incur a significant overhead over

search techniques that focus on finding a single satisfying assignment [19]. Thus,

published comparisons between search and BDD techniques [40, 55] used search

to enumerate all satisfying assignments. The conclusion of that comparison is

that no approach dominates; for certain classes of formulas search is superior,

and for other classes of formulas BDDs are superior.

Recent work has shown how to use BDDs for satisfiability solving rather than

enumeration [50]. The idea of this approach, which we call symbolic quantifier
elimination, is to view an instance of propositional satisfiability as an

existentially quantified propositional formula. Satisfiability solving then amounts

to quantifier elimination; once all quantifiers have been eliminated, we are left

with either 1 or 0. This enables us to apply ideas about existential quantifier

elimination from model checking [49] and constraint satisfaction [26]. The focus

in [50] is on expected behavior on random instances of 3-SAT rather than on

efficiency. In particular, only a minimal effort is made to optimize the approach,

and no comparison to search methods is reported. Nevertheless, the results in

[50] show that BDD-based algorithms behave quite differently from search-based

algorithms, which makes them worthy of further investigation. (Other recent

approaches reported using decision diagrams in satisfiability solving [15, 22, 29,

46]. We discuss these works later).

Our goal in this paper is to study the effectiveness of symbolic quantifier

elimination as an approach to satisfiability solving. To that end, we conduct a

direct comparison with the DPLL-based ZChaff, as well as evaluate a variety of

optimization techniques for the symbolic approach. In comparing the symbolic

approach to ZChaff we use a variety of classes of formulas. Unlike, however, the

standard practice of comparing solver preformance on benchmark suites [42], we

focus here on scalability. That is, we focus on scalable classes of formulas and

evaluate how performance scales with formula size. As in [55] we find that no

approach dominates across all classes. While ZChaff dominates for many classes

of formulas, the symbolic approach is superior for other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we focus on

optimization techniques. The key idea underlying [50] is that evaluating an

existentially quantified propositional formula in conjunctive-normal form

requires performing several instances of conjunction and of existential

quantification. The goal is to find a good plan for these operations. We study

26 GUOQIANG PAN AND MOSHE Y. VARDI



two approaches to this problem. The first is Bouquet’s method (BM) of [50], and

the second is the bucket-elimination (BE) approach of [26]. BE aims at reducing

the size of the support set of the generated BDDs through quantifier elimination.

It has the theoretical advantage of being, in principle, able to attain optimal

support set size, which is the treewidth of the input formula [28]. Nevertheless,

we find that for certain classes of formulas, BM is superior to BE.

The key to good performance in both BM and BE is in choosing a good

variable order for quantification and BDD order. Finding an optimal order is by

itself a difficult problem (computing the treewidth of a given grah is NP-hard

[4]), so one has to resort to various heuristics; cf. [41]. No heuristic seems to

dominate across all classes of formulas, but the maximal-cardinality search

(MCS) heuristic seems to offer the best overall performance.

We contrast our symbolic solvers with two other solvers, using the MCS

variable order. We reimplemented ZRes, the ZDD-based multiresolution aproach

of [15], and ZChaff, the DPLL-based solver of [45] to use the MCS variable

order. The goal is to have a comparison of the different techniques, using the

same variable order. See further discussion below.

We start the paper with a description of symbolic quantifier elimination as well

as the BM approach in Section 2. We then describe the experimental setup in

Section 3. In Section 4 we compare ZChaff with BM and show that no approach

dominates across all classes of formulas. In Section 5 we compare BM with BE

and study the impact of various variable-ordering heuristics. In Section 6 we

compare our BDD-based algorithm with a ZDD-based algorithm based on ZRes

[15] and compare the dynamic variable decision order used in ZChaff with a

structural-guided static variable order. We conclude with a discussion in Section 7.

2. Background

A binary decision diagram is a rooted directed acyclic graph that has only two

terminal nodes, labeled 0 and 1. Every nonterminal node is labeled with a

Boolean variable and has two outgoing edges labeled 0 and 1. An ordered binary

decision diagram (BDD) is a BDD with the constraint that the input variables are

ordered and every path in BDD visits the variables in ascending order. We

assume that all BDDs are reduced, which means that every node represents a

distinct logic function. BDDs constitute an efficient way to represent and

manipulate Boolean functions [12], in particular, for a given variable order,

BDDs offer a canonical representation. Checking whether a BDD is satisfiable

is also easy; it requires checking that it differs from the predefined constant 0

(the empty BDD). We used the CUDD package for managing BDDs [53]. The

support set of a BDD is the set of variables labeling its internal nodes.

In [19, 55], BDDs are used to construct a compact representation of the set of

all satisfying truth assignments of CNF formulas. The input formula ’ is a

conjunction c1^ . . . ^cm of clauses. The algorithm constructs BDD Ai for each

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 27



clause ci. (Since a clause excludes only one assignment to its variables, Ai is of

linear size.) A BDD for the set of satisfying truth assignments is then constructed

incrementally; B1 is A1, while Bi+1 is the result of APPLY (Bi, Ai, ^), where APPLY

(A, B, )) is the result of applying a Boolean operator ) to two BDDs A and B.
The resulting BDD Bm represents all satisfying assignments of the input formula.

We can apply existential quantification to a BDD B:

9xð ÞB ¼ APPLY B x 1;j B x 0;j _ð Þ;
where Bªx@ c restricts B to truth assignments that assign the value c to the

variable x. Note that quantifying x existentially eliminates it from the support set

of B. The satisfiability problem is to determine whether a given formula c1^ . . .
^cm, is satisfiable. In other words, the problem is to determine whether the

existential formula (9x1) . . . (9xn) (c1^ . . . ^cm) is true. Since checking whether

the final BDD Bm is equal to 0 can be done by CUDD in constant time, it makes

little sense to apply existential quantification to Bm. Suppose, however, that a

variable xj does not occur in the clauses ci+1 , . . . , cm. Then the existential fomula

can be rewritten as

9x1ð Þ . . . 9xj�1
� � 9xjþ1� �

. . . 9xnð Þ 9xj
� �

c1 ^ . . . ^ c1ð Þ ^ ciþ1 ^ . . . ^ cmð Þ� �
:

Pursuing this rewriting strategy as aggressively as possible, we process the

clauses in the order c1, . . . ,cn, quantifying variables existentially as soon as

possible (that is, a variable is quantified as soon as it does not occur anymore in

the unprocessed clauses). We refer to this as early quantification of variables.

Note that different clause orders may induce different orders of variable

quantification. Finding a good clause order is a major focus of this paper.

This motivates the following change in the earlier BDD-based satisfiability-

solving algorithm [50]: after constructing the BDD Bi, quantify existentially

variables that do not occur in the clauses ci+1 , . . . ,cm. In this case we say that the

quantifier 9x has been eliminated. The computational advantage of quantifier

elimination stems from the fact that reducing the size of the support set of a BDD

typically (though not necessarily) results in a reduction of its size; that is, the size

of (9x)B is typically smaller than that of B. In a nutshell, this method, which we

describe as symbolic quantifier elimination, eliminates all quantifiers until we are

left with the constant BDD 1 or 0. Symbolic quantifier elimination was first

applied to SAT solving in [34] (under the name of hiding functions) and tried on

random 3-SAT instances. The work in [50] studies this method further, and

considered various optimizations. The main interest here, however, is in the

behavior of the method on random 3-SAT instances, rather in its comparison to

DPLL-based methods.j

j Note that symbolic quantifier elimination provides pure satisfiability solving; the

algorithm returns 0 or 1. To find a satisfying truth assignment when the formula is satisfiable,
one can use the technique of self-reducibility; cf. [5].

28 GUOQIANG PAN AND MOSHE Y. VARDI



So far we have processed the clauses of the input formula in a linear fashion.

Since the main point of quantifier elimination is to eliminate variables as early as

possible, reordering the clauses may enable us to do more aggressive quan-

tification. That is, instead of processing the clauses in the order c1, . . . , cm, we can
apply a permutation p and process the clauses in the order cp(1), . . . , cp(m). the

permutation p should be chosen so as to minimize the number of variables in the

support sets of the intermediate BDDs. This observation was first made in the

context of symbolic model checking; cf [9, 13, 32, 36]. Unfortunately, finding an

optimal permutation p is by itself a difficult optimization problem, motivating

heuristic approaches.

A particular heuristic proposed in the context of symbolic model checking in

[49] was that of clustering. In this approach, the clauses are not processed one at

a time; instead, several clauses are first partitioned into several clusters. For each

cluster C we first apply conjunction to all the BDDs of the clauses in the C to

obtain a BDD BC. The clusters are then combined, together with quantifier

elimination, as described earlier. Heuristics are required both for clustering the

clauses and for ordering the clusters. Bouquet proposed the following heuristics in

[11] (the focus there is on enumerating prime implicants). Consider some order

of the variables. Let the rank (form 1 to n) of a variable x be rank(x), let the rank
rank(‘) of a literal ‘ be the rank of its underlying variable, and let the rank

rank(c) of a clause c be the maximum rank of its literals. The clusters are the

equivalence classes of the relation õ defined by: c õ c0 iff rank(c) = rank(c0).
The rank of a cluster is the rank of its clauses. The clusters are then ordered

according to increasing rank. For example, given the set of clauses {x1 ¦ Kx2, x1
¦ x3, Kx2 ¦ x3, x3 ¦ x4}, the clusters are C1 = {}, C2 = {x1 ¦ Kx2}, C3 = {x1 ¦
x3, Kx2 ¦ x3}, and C4 = {x3 ¦ x4}.

Satisfiability solving using symbolic quantifier elimination is a combination of

clustering and early quantification. We keep a set of active variables as we

conjoin clusters in order C1, . . . ,Cn. Starting from an empty set, after each cluster

Ci is processed, we add all the variables that occur in Ci to the active set. Then, a

variable that does not occur in all Cjs, where j > i, can be removed from the

active set and eliminated by means of early quantification. Hence, we are

computing 9Xn . . . (9X2(((9X1)C1) ^ C2) . . . ^Cn), where the quantified variable

set Xi consists of the active variables that can be quantified early after Ci is

processed. (CUDD allows quantifying several variables in function call.) When

we use Bouquet’s clustering, the method is referred to in [50] as Bouquet’s
method, which we abbreviate here as BM. For the example above, the BM

quantification schedule is 9x3x4((9x1x2((C1 ^ C2) ^ C3)) ^ C4).

We still have to choose a variable order. An order that is often used in

constraint satisfaction [25] is the Bmaximum cardinality search^ (MCS) order of

[54], which is based on the graph-theoretic structure of the formula. The graph

associated with a CNF formula ’ =^ ici is G’ ¼ V;Eð Þ, where V is the set of

variables in ’ and an edge {xi, xj} is in E if there exists a clause ck such that xi

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 29



and xj occur in ck. We refer to G’ as the Gaifman graph of ’. MCS ranks the

vertices from 1 to n in the following way: as the next vertex to rank, select the

vertex adjacent to the largest number of previously ranked vertices (ties can be

broken in various ways). The variable order used for the BDDs in the

comparisons unless otherwise mentioned is the inverse of the MCS orderj

(see Section 5.2 for exceptions).

3. Experimental Setup

We compare symbolic quantifier elimination to ZChaff across a variety of classes

of formulas. Unlike the standard practice of comparing solver performance on

benchmark suites [42], our focus here is not on simple time comparison, but

rather on scalability. That is, we focus on scalable classes of formulas and

evaluate how performance scales with formula size. We are interested in seeing

which method scales better, that is, polynomial vs. exponential scalability, or

different degrees of exponential scalability. Our test includes both random and

non-random formulas (for random formulas we took 60 samples per case and

reported median time). Experiments were performed by using x86 emulation on

the Rice Terascale Cluster,jj which is a large Linux cluster of Itanium II

processors with 4 GB of memory each.

Our test suite includes the following classes of formulas:

Y Random 3-CNF: We choose uniformly k 3-clauses over n variables. The

density of an instance is defined as k/n. We generate instances at densities

1.5, 6, 10, and 15, with up to 200 variables, to allow comparison for both

under-constrained and over-constrained cases. (it is known that the

satisfiability threshold of such formulas is around 4.25 [52]).
Y Random affine 3-CNF: Affine-3-CNF formulas belongs to a polynomial

class as classified by Schaefer [51]. Here, they are generated in the same

way as random 3-CNF formulas except that the constraints are not 3-

clauses but are parity equations in the form of l1 � l2 � l3 = 1.- Each

constraint is then converted into four clauses, l1 ¦ l2 ¦ l3, Kl1 ¦ Kl2 ¦ l3,
Kl1 ¦ l2 ¦ Kl3, and l1 ¦ Kl2 ¦ Kl3, yielding CNF formulas. The

satisfiability threshold of such formula is found empirically to be around

density (number of equations divided by number of variables) 0.95. We

generate instances of density 0.5 and 1.5, with up to 400 variables.
Y Random biconditionals: Biconditional formulas, also known as Urquhart

formulas, form a class of affine formulas that have provably exponential

j Using the MCS order or its inverse as the BDD variable order exhibits little

performance difference, so the inverse is preferred because the BE approach presented in
Section 5.1 is easier to implement on the inverse order.
jj http://www.citi.rice.edu/rtc/

- This is equivalent to just choosing three variables and generating x1 � x2 � x3 = p where
p = 0 or p = 1 with equal probability.

30 GUOQIANG PAN AND MOSHE Y. VARDI



resolution proofs. A biconditional formula has the form l1 $ (l2 $
(. . . (lkj1 $ lk). . . )), where each li is a positive literal. Such a formula is

valid if either all variables occur an even number of times or all variables

occur an odd number of times [56]. We generate valid formulas with up to

100 variables, where each variable occurs three times on average.
Y Random chains: The classes described so far all have an essentially

uniform random Gaifman graph, with no underlying structure. To extend

our comparison to structured formulas, we generate random chains [27]. In

a random chain, we form a long chain of random 3-CNF formulas, called

subtheories. (The chain structure is reminiscent of the structure typically

seen in satisfiability instances obtained from bounded model checking [8]

and planning [39]). We use similar generation parameters as in [27], where

there are 5 variables per subtheory and 5Y23 clauses per subtheory, but we

generate instances with a much bigger number of subtheories, scaling up to

>20,000 variables and >4,000 subtheories.
Y Nonrandom formulas: As in [55], we considered a variety of formulas with

very specific scalable structure:

� The n-Rooks problem (satisfiable).
� The n-Queens problem (satisfiable for n > 3).
� The pigeon-hole problem with n + 1 pigeons and n holes (unsatisfiable).
� The mutilated-checkerboard problem, where an n � n board with two

diagonal corner tiles removed is to be tiled with 1 � 2 tiles

(unsatisfiable).

4. Symbolic vs. Search Approaches

Our goal in this section is to address the viability of symbolic quantifier

elimination. To that end we compare the performance of BM against ZChaff,j a

Figure 1. Random 3-CNF.

j ZChaff version 2004.5.13.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 31



leading DPLL-based solver across the classes of formulas described above, with

a focus on scalability. For now, we use the MCS variable order.

In Figure 1A and B, we can see that BM is not very competitive for random 3-

CNF formulas. At density 1.5, ZChaff scales polynomially, while BM scales

exponentially. At density 6.0 and at higher densities, both methods scale

exponentially, but ZChaff scales exponentially better. (Note that above density

6.0 both methods scale better as the density increases. This is consistent with the

experimental results in [19] and [50].) A similar pattern emerges for random

affine formulas; see Figure 2. Again, ZChaff scales exponentially better than

BM. (Note that both methods scale exponentially at the higher density, while it is

known that affine satisfiability can be determined in polytime by using Gaussian

elimination [51]).

The picture changes for biconditional formulas, as shown in Figure 3A.

Again, both methods are exponential, but BM scales exponentially better than

ZChaff. (This result is consistent with the finding in [15], which compares

search-based methods methods to ZDD-based multiresolution).

For random chains, see Figure 3B, which uses a logYlog scale. Both methods

scale polynomially on random chains. (Because density for the most difficult

Figure 2. Random 3-Affine.

Figure 3. A) Random Biconditionals, B) Random Chains.

32 GUOQIANG PAN AND MOSHE Y. VARDI



problems changes as the size of the chains scales, we selected here the hardest

density for each problem size.) Here BM scales polynomially better than ZChaff.

Note that for smaller instances ZChaff outperforms BM, thereby justifying our

focus on scalability rather than on straightforward benchmarking.

In addition, we compare BM with ZChaff on the nonrandom formulas of [55].

The n-Rooks problem is a simpler version of n-Queens problem, where the

diagonal constraints are not used. For n-Rooks, the results are as in Figure 4A.

This problem has the property of being globally consistent; that is, any consistent

partial solution can be extended to a solution [25]. Thus, the problem is trivial for

search-based solvers because no backtracking is needed. In contrast BM scales

exponentially on this problem. For n-Queens (see Figure 4B), BM scales

exponentially in n2, while ZChaff seems to have better scalability. Again, a

different picture emerges when we consider the pigeon-hole problem and the

mutilated-checkerboard problem; see Figure 5A and B. On both problems both

BM and ZChaff sclae exponentially, but BM scales exponentially better than

ZChaff.

Figure 4. A) n-Rooks B) n-Queens.

Figure 5. A) Pigeon-Hole, B) Mutilated Checkerboard.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 33



As in [55], where BDDs and DPLL are compared for solution enumeration,

we find that no approach dominates across all classes. While ZChaff dominates

for many classes of formulas, the symbolic approach is superior for other classes

of formulas. This result suggests that the symbolic quantifier elimination is a

viable approach and deserves further study. In the next section we focus on

various optimization strategies for the symbolic approach.

5. Optimizations

So far we have described one approach to symbolic quantifier elimination.

However, one needs to make many choices to guide an implementation. The order

of variables is used to guide clustering and quantifier elimination, as well as to

order the variables in the underlying BDDs. Both clustering and cluster processing

can be performed in several ways. In this section, we investigate the impact of

choices in clustering, variable order, and quantifier elimination in the implemen-

tation of symbolic algorithms. Our focus here is on measuring the impact of

variable order on BDD-based SAT solving; thus, the running time for variable

ordering, which is polynomial for all algorithms, is not counted in our figures.

5.1. CLUSTER ORDERING

As argued earlier, the purpose of quantifier elimination is to reduce support-set

size of intermediate BDDs. What is the best reduction one can hope for? This

question has been studied in the context of constraint satisfaction. It turns out that

the optimal schedule of conjunctions and quantifier eliminations reduces the

support-set size to one plus the treewidth of the Gaifman graph of the input

formula [21]. The treewidth of a graph is a measure of how close this graph is to

being a tree [28]. Computing the treewidth of a graph is known to be NP-hard,

which is why heuristic approaches are employed [41]. It turns out that by

processing clusters in a different order we can attain the optimal support-set size.

Recall that BM processes the clusters in order of increasing ranks. Bucket
elimination (BE), on the other hand, processes clusters in order of decreasing

ranks [26]. Maximal support-size set of BE with respect to optimal variable order

is defined as the induced width of the input instance, and the induced width is

known to be equal to the treewidth [26, 30]. Thus, BE with respect to optimal

variable order is guaranteed to have polynomial running time for input instances

of logarithmic treewidth, since this guarantees a polynomial upper bound on

BDD size. For BE, since the maximum-ranked variable in each cluster cannot

occur in any lower-ranked clusters, computing a quantification schedule from the

contents of the clusters is not necessary. As each cluster is processed, the

maximum-ranked variable is eliminated. For example, for the formula presented

in Section 2, the quantification schedule would be 9x1((9x2((9x3((9x4C4) ^ C3))

^ C2)) ^ C1), with one variable eliminated per cluster processed. As shown,

34 GUOQIANG PAN AND MOSHE Y. VARDI



using the inverse of variable rank as the BDD variable order allows us to always

eliminate the top variable in the BDD.

We now compare BM and BE with respect to MCS variable order (MCS is

the preferred variable order also for BE).

The results for the comparison on random 3-CNF formulas are plotted in

Figure 6A and B. We see that the difference between BM and BE is density

dependent, where BE excels in the low-density cases, which have low treewidth,

and BM excels in the high-density cases, which have high treewidth. A similar

density-dependent behavior is shown for the affine case in Figure 7. The

difference of the two schemes on biconditional formulas is quite small, as shown

in Figure 8A. For chains, see Figure 8B. Because the number of variables for

these formulas is large, the cost of computing the quantification schedule gives

BE an edge over BM.

On most constructed formulas, the picture is similar to the high-density

random cases, where BM dominates, except for mutilated-checkerboard

formulas, where BE has a slight edge. (Note that treewidth for mutilated

checkerboard problems grows only at O(n), compared to O(n2) for other

constructed problems.) We plot the performance comparison for n-rook formulas

Figure 6. Clustering Algorithms Y Random 3-CNF.

Figure 7. Clustering Algorithms Y Random Affine.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 35



in Figure 9A, n-queens formulas in Figure 9B, pigeon-hole formulas in Figure

10A, and mutilated-checkerboard problems in Figure 10B.

To understand the difference in performance between BM and BE, we study

their effect on intermediate BDD size. BDD size for a random 3-CNF instance

depends crucially on both the number of variables and the density of the instance.

Thus, we compare the effect of BM and BE in terms of these measures for the

intermediate BDDs. We apply BM and BE to random 3-CNF formulas with 50

variables and densities 1.5 and 6.0. We then plot the density vs. the number of

variables for the intermediate BDDs generated by the two cluster-processing

schemes. The results are plotted in Figure 11A and B. Each plotted point

corresponds to an intermediate BDD, which reflects the clusters processed so far.

As can be noted from the figures, BM increases the density of intermediate

results much faster than does BE. This difference is quite dramatic for high-

density formulas. The relation between density of random 3-CNF instance and

BDD size has been studied in [19], where it is shown that BDD size peaks at

around density 2.0 and is lowest when the density is close to 0 or the satisfiability

threshold. This enables us to offer an possible explanation to the superiority of

Figure 8. Clustering Algorithms Y A) Random Biconditionals, B) Random Chains.

Figure 9. Clustering Algorithms Y A) n-Rooks, B) n-Queens.

36 GUOQIANG PAN AND MOSHE Y. VARDI



BE for low-density instances and the superiority of BM for high-density

instances. For formulas of density 1.5, the density of intermediate results is

smaller than 2.0, and BM’s increased density results in larger BDDs. For

formulas of density 6.0, BM crosses the threshold density 2.0 using a smaller

number of variables, and then BM’s increased density results in smaller BDDs.

The general superiority of BM over BE suggests that minimizing support-set

size ought not to be the dominant concern. BDD size is correlated with, but not

dependent on, support-set size. More work is required in order to understand the

good performance of BM. Our explanation argues that, as in [3], BM first deals

with the most constrained subproblems, therefore reducing BDD-size of

intermediate results. While the performance of BE can be understood in terms

of treewidth, however, we still lack a fundamental theory to explain the

performance of BM.

Figure 10. Clustering Algorithms Y A) Pigeon-Hole, B) Mutilated Checkerboard.

Figure 11. Clustering Algorithms A) Density = 1.5, B) Density = 6.0.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 37



5.2. VARIABLE ORDERING

In this section, we study the effects of the variable order on the performance of

symbolic algorithms. We present results only for BM because the picture is

similar for BE. The variable order for the BDD representation is again the

inverse of the variable order for clustering. As mentioned earlier, when selecting

variables, MCS has to break ties, a situation that happens quite often. One can

break ties by choosing (form those variables that have the maximum cardinality

to ranked variables as MCS requires) the variable with minimal degree to

unselected variables [50] or the variable with the maximal degree to unselected

variables [6]. (Another choice is to break ties uniformly at random, but this

choice is expensive to implement because it is difficult to choose an element

uniformly at random from a heap). We compare these two heuristics with an

arbitrary tie-breaking heuristic, in which we simply select the top variable in the

heap. The results are shown in Figure 12A for random 3-CNF formulas. For

high-density formulas, tie breaking makes no significant difference, but least-

degree tie breaking is markedly better for the low-density formulas. This

Figure 12. A) Variable Ordering Tie-Breakers B) Initial Variable Choice.

Figure 13. Vertex Order Heuristics: Random 3-CNF Y A) Density = 1.5, B) Density = 6.

38 GUOQIANG PAN AND MOSHE Y. VARDI



situation seems to be applicable across a variety of class of formulas and even for

different orders and algorithms.

MCS typically has many choices for the lowest-rank variable. In Koster et al.

[41], it is recommended to start from every vertex in the graph and choose the

variable order that leads to the lowest treewidth. This approach is easily done for

instances of small size, that is, random 3-CNF or affine problems; but for

structured problems, which could be much larger, the overhead is too expensive.

Since min-degree tie-breaking worked quite well, we used the same idea for

initial variable choice. In Figure 12B, we see that our assumption is well

founded; that is, the benefit of choosing the best initial variable compared to

choosing a min-degree variable is negligible. For larger problems like the chains

or the bigger constructed problems, the additional overhead of trying every initial

variable would be prohibitive, so we used the low-degree seed in all cases.

Algorithms for BDD variable ordering in the model-checking systems are

often based on circuit structures, for example, some form of circuit traversal [31,

43] or graph evaluation [16]. These techniques are not applicable here because

the formulas are provided in CNF and the original circuit structure is lost.

Figure 14. Vertex Order Heuristics Y A) Pigeon-Hole, B) Mutilated Checkerboard.

Figure 15. Quantifier Elimination-Random 3-CNF.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 39



MCS is just one possible vertex-ordering heuristics. Other heuristics have

been studied in the context of treewidth approximation. In [41] two other vertex-

ordering heuristics that are based on local search are studied: LEXP and LEXM.

Both LEXP and LEXM are based on lexicographic breadth-first search, where
candidate variables are lexicographically ordered with a set of labels, and the

labels are either the set of already chosen neighbors (LEXP) or the set of already

chosen vertices reachable through lower-ordered vertices (LEXM). Both

algorithms try to generate vertex orders where a triangulation would add a small

amount of edges, thus reducing treewidth. In [25], Dechter also studied heuristics

like min-induced-width (MIW) or min-fill (MF), which are greedy heuristics

based on choosing the vertex that have the least number of induced neighbors

(MIW) or the vertex that would add the least number of induced edges (MF).

In Figure 13A and B, we compare variable orders constructed from MCS,

LEXP, LEXM, MIW, and MF for random 3-CNF formulas. For high-density

cases, MCS is clearly superior. For low-density formulas, LEXP has a small

edge, although the difference is minimal. Across the other problem classes (for

example, pigeon-hole formulas as in Figure 14A and mutilated checkerboard as

in Figure 14B), MCS uniformly appears to be the best order, being the most

consistent and generally the top performer. Interesting, while other heuristics like

MF often yield better treewidth, MCS still yields better runtime performance.

This indicates that minimizing treewidth need not be the dominant concern; the

dominant concern is minimizing BDD size. (BDD size seems more closely

related to pathwidth [10], rather than treewidth. We speculate that MCS is a

better order for pathwidth minimization).

5.3. QUANTIFIER ELIMINATION

So far we have argued that quantifier elimination is the key to the performance of

the symbolic approach. In general, reducing support-set size does result in

Figure 16. Quantifier Elimination Y A) Pigeon-Hole, B) Mutilated Checkerboard.

40 GUOQIANG PAN AND MOSHE Y. VARDI



smaller BDDs. It is known, however, that quantifier elimination may incur

nonnegligible overhead and may not always reduce BDD size [12]. To

understand the role of quantifier elimination in the symbolic approach, we

reimplemented BM and BE without quantifier elimination. Thus, we do not

construct a BDD that represent all satisfying truth assignments, but we do that

according to the clustering and cluster processing order of BM and BE.

In Figures 15A and B, we plotted the running time of both BM and BE, with

and without quantifier elimination on random 3-CNF formulas. We see that there

is a trade-off between the cost and benefit of quantifier elimination. For low-

density instances, where there are many solutions, the improvement from

quantifier elimination is clear, but for high-density instances, quantifier elimina-

tion results in no improvement (while not reducing BDD size). For BE, where the

overhead of quantifier elimination is lower, quantifier elimination improves

performance very significantly at low density, although at high density there is a

slight slowdown. On the other hand, quantifier elimination is important for the

constructed formulas, for example, for the pigeon-hole formulas in Figure 16A and

the mutilated checkerboard formulas in Figure 16B.

6. Comparison with Other Approaches

In the previous section, we conducted a comprehensive comparison of the impact

of different parameters on the BDD-based symbolic approach. Next, we expand

our focus to other approaches, first by comparing the BDD-based symbolic

quantifier elimination with ZDD-based multiresolution, then by comparing the

structural variable order we used with the default dynamic variable order in the

context of ZChaff.

6.1. BDDS VS. ZDDS

So far we have used symbolically represented sets of truth assignments. An

alternative approach is to use decision diagrams to represent sets of clauses

instead of sets of assignments. ZRes [15] is a symbolic implementation of the

directional resolution alogrithm in [24, 27]. The approach is also referred to as

multiresolution because the algorithm carries out all resolutions over a variable

in one symbolic step. Since individual clauses are usually sparse with respect to

the set of variables, ZRes [15] used ZDDs [44], which typically offer a higher

compression ratio than BDDs for the sparse spaces. Each propositional literal ‘
is represented by a ZDD variable v‘ (thus a propositional variable can be

represented by two ZDD variables), and clause sets are represented as follows:

Y The empty clause e is represented by the terminal node 1.
Y The empty set ; is represented by the terminal node 0.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 41



Y Given a set C of clauses and a literal ‘ whose ZDD variable v‘ is lowest in
a given variable order, we split C into two subsets: C‘ ¼ cjc 2 C; ‘ 2 cf g
and C0 ¼ C� C‘. Given ZDDs representing C would be rooted at v‘ and
have ZDDs for C

0 0
and C

0
as its left and right children.

This representation is the dual of using ZDDs to represent irredundant sum of

products (ISOPs) of Boolean functions [44].

We use two set operations on sets of clauses: (1) � is the crossproduct

operator, where for two clause sets C and D, C � D={cª9c 0 Z C, 9c 00ZD, c= c 0

? c00}, and (2) + is subsumption-free union, so if both C and D are subsumption-

free, and c Z C + D, then there is no c 0 Z C + D where c0 Î c. Multiresolution

is implemented by using � on cofactors: given a ZDD f, fxþ (resp. fx�) is the

ZDDs corresponding to the positive cofactor on ZDD variable vx (resp. vKx, so
fxþ ¼ aja _ x 2 ff g and fx� ¼ aja _ :x 2 ff g. Now fxþ � fx� (after removing

tautologies) represents the set of all resolvents of f and x, which has to be

combined by using + with fx0 , which is the ZDD for the clauses not containing x.
ZRes eliminates variables by using multiresolution one by one until either the

Figure 17. Random 3-CNF.

Figure 18. Random 3-Affine.

42 GUOQIANG PAN AND MOSHE Y. VARDI



empty clause is generated, in which case the formula is unsatisfiable, or all

variables have been eliminated, in which case the formula is satisfiable.

To facilitate a fair comparison between ZRes and our BDD-based solver, we

used the multiresolution code used in [15] under our bucket elimination

framework and used the same variable and elimination order as the BDD-based

algorithms. This can be seen as a comparison of the compression capability of

ZDD-based clause sets versus BDD-based solutions sets representations, since at

comparable stages of the two algorithms (say, before variable xi, is eliminated),

the data structures represents the same Boolean function. As an optimization, a

simple form of unit preference is implemented for the ZDD-based multi-

resolution, since unit clauses can be easily detected in the ZDD-based clause set

representation and resolved out-of-order.

The results for the 3-CNF and affine satisfiability cases are plotted in Figures

17A,B, and 18. We see that the differences between the two approaches are again

density dependent. Just like the differences between BE and BM, ZDD-based

multiresolution is more efficient at low density and less efficient at high density.

This result can be related to the compression ratio achieved by the two

Figure 19. A) Random Biconditionals, B) Random Chains.

Figure 20. A) n-Rooks, B) n-Queens.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 43



representations at different densities, where the clause set representation is far

more efficient at low densities. For the high-density case, the clause set

representation starts to show its shortcomings. High-density problems typically

have a large number of clauses and few solutions: clause-set representation is

less efficient in this case. This is especially evident for the unsatisfiable case

where, if BDDs are used, unsatisfiability can be detected immediately, but if

clause sets are used, detection is delayed until an empty clause is generated.

Next we examine the other classes of formulas in Figure 19A,B, Figure

20A,B, Figure 21A, and B. In all cases, the BDD-based approach is superior to

the ZDD-based approach.j

An explanation for the superiority of the BDD-based approach can be

provided in terms of the cost of the quantifier-elimination operation. Complexity

of decision-diagram algorithms can be measured in the number of cache lookups

Figure 21. A) Pigeon-Hole, B) Multilated Checkerboard.

Figure 22. Variable Order Y Random 3-CNF (1).

j There exist other ZDD-based approaches for hard-for-resolution problems, for

example, CASSAT [46], which exhibits polynomial running time on pigeon-hole formulas
[47]. A comparison with these approaches would be a future direction of this research.

44 GUOQIANG PAN AND MOSHE Y. VARDI



that the algorithm performs. Quantifying out a single variable uses the BDD Bor^
operation, which has a proven O(n2) upper bound on the number of cache look-

ups [12]. The same cannot be said for the ZDD multiresolution operation used to

quantify out a single variable, where the number of cache look-ups can be

exponential in the width of the input ZDDs. Empirically, the number of cache

lookups can be 1Y2 orders of magnitude larger than the size of the output ZDD.

This is the main contribution to the performance hit taken by the ZDD-based

algorithm.

In [48] we compared BDD-based and ZDD-based approaches to QBF solving,

showing that ZDD-based multiresolution has a clear edge. Since QBF problems

are required to be underconstrained propositionally (otherwise they would be

easily unsatisfiable because of the unversal quantifiers), the extra compression of

the ZDD-based clause-set representation would apply, explaining the superiority

of the ZDD-based approach.

Figure 23. Variable Order Y Random 3-CNF (2).

Figure 24. Variable Order Y Random Affine.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 45



6.2. STRUCTURE-GUIDED VARIABLE ORDER FOR SEARCH

In Section 5, we showed that the choice of variable order is important to the

performance of BDD-based satisfiability solvers. We showed that MCS variable

order offers good algorithmic performance across a variety of input formulas. In

contrast, most search-based algorithms use a dynamic variable order, based on

the clauses visited or generated during the search procedure, for example, the

VSIDS heuristic used in ZChaff [45]. To offer a more direct comparison between

search-based and symbolic methods, we reimplemented ZChaff with the MCS

variable order and compared its performance with ZChaff and with the symbolic

solvers. (See [1, 37] for earlier work on structure-guided variable order for

search-based methods.) We compared here the performance of ZChaff with the

default (VSIDS) variable order, ZChaff with MCS variable order, and the BDD-

based sovers (for each formula class we chose the best solver between BM and

BE).

The results for random formulas are shown in Figure 22A,B, Figure 23A,B,

Figure 24A,B, Figure 25A and B, and the results for constructed formulas are

shown in Figures 26A,B, Figure 27A and B. In general, the structure-guided

Figure 25. Variable Order Y A) Random Biconditional, B) Random Chains.

Figure 26. Variable Order Y A) n-Rooks, B) n-Queens.

46 GUOQIANG PAN AND MOSHE Y. VARDI



variable order is inferior in terms of performance to dynamic variable order

(VSIDS). For easy problems, the overhead of precomputing the variable order is

quite significant. The performance loss should not be entirely attributed to the

overhead, though, since we also observed an increase in the number of impli-

cations performed. Thus, dynamic variable order is, in general, a better algo-

rithmic choice. Nevertheless, for most formulas, these is no exponential gap in

scaling between the two variable-order heuristics.

Also, replacing VSIDS by MCS did not change the relationship between

ZChaff and the BDD-based solvers. The difference in performance between

search-based and symbolic approaches is larger than the difference between static

and dynamic decision order for ZChaff. In none of the cases did the static vari-

able order change the relative picture between search and symbolic approaches.

This shows that the general superiority of search-based vs. symbolic techniques

cannot be attributed to the use of dynamic variable order.

7. Discussion

Satifiability solvers have made tremendous progress over the past few years,

partly driven by frequent competitions; cf. [42]. At the same time, our

understanding of why extant solvers perform so well is lagging. Our goal in

this paper is not to present a new competitive solver but rather to call for a

broader research agenda in satisfiability solving. We showed that a symbolic

approach can outperform a search-based approach in certain cases, but more

research is needed before we can have robust implementations of the symbolic

approach. Recent works have suggested other symbolic approaches to satisfi-

ability solving, for example, compressed BFS search in [46] and BDD

representation for non-CNF constraints in the framework of DPLL search in

[22, 29, 38]. These works bolster our call for a broader research agenda. Such an

agenda should build connections with two other successful areas of automated

reasoning, namely, model checking [18] and constraint satisfaction [25].

Figure 27. Variable Order Y A) Pigeon-Hole, B) Multi Checkerboard.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 47



Furthermore, such an agenda should explore hybrid approaches combining

search and symbolic techniques; cf. [22, 29, 35, 38, 46]. One hybrid approach

that has shown promise is that of the QBF solver Quantor [7], where quantifier

elimination is applied until the formula become propositional and then a search-

based solver takes olver.

As an extension to this work, we can experiment with other variable-order

heuristics, for example, MINCE [1], FORCE [2], or the ones proposed in [37], all

of which are also structurally based. Another direction for development is to take

a combination of density-dependent heuristics and structural heuristics and apply

them to hybrid BDD-based SAT solvers such as CirCUs [38] or the approach

presented in [22].

Acknowledgement

We thank Enrico Giunchiglia for proposing the experiments on structural-guided

variable order for search.

References

1. Aloul, F., Markov, I. and Sakallah, K.: MINCE: a static global variable-ordering for SAT and

BDD, in Proc. IEEE 10th International Workshop on Logic and Synthesis, 2001, pp.

281Y286.

2. Aloul, F., Markov, I. and Sakallah, K.: FORCE: a fast and easy-to-implement variable-

ordering heuristic, in Proc. of the 13th ACM Great Lakes Symposium on VLSI 2003, 2003, pp.
116Y119.

3. Amir, E. and McIlraith, S.: Solving satisfiability using decomposition and the most

constrained subproblem, in LICS Workshop on Theory and Applications of Satisfiability
Testing (SAT 2001), June 2001.

4. Arnborg, S., Corneil, D. and Proskurowski, A.: Complexity of finding embeddings in a k-tree,
SIAM J. Algebr. Discrete Math. 8 (1987), 277Y284.

5. Balcazar, J.: Self-reducibility, J. Comput. Syst. Sci. 41(3) (1990), 367Y388.

6. Beatty, D. and Bryant, R.: Formally verifying a microprocessor using a simulation

methodology, in Proc. 31st Design Automation Conference, 1994, pp. 596Y602.

7. Biere, A.: Resolve and expand, in: Proc. 7th Conf. on Theory and Applications of
Satisfiability Testing (SAT 2004), 2004, pp. 238Y246.

8. Biere, A., Clarke, C. A. E., Fujita, M. and Zhu, Y.: Symbolic model checking using SAT

procedures instead of BDD, in Proc. 36th Conf. on Design Automation, 1999, pp. 317Y320.

9. Block, M., Gröpl, C., Preuß, H., Proömel, H. L. and Srivastav, A.: Efficient ordering of state

variables and transition relation partitions in symbolic model checking. Technical report,

Institute of Informatics, Humboldt University of Berlin, 1997.

10. Bodlaender, H. and Kloks, T.: Efficient and constructive algorithms for the pathwidth and

treewidth of graphs, J. Alogorithms 21 (1996), 358Y402.

11. Bouquet, F.: Gestion de la dynamicite et enumeration d’implicants preniers, une approche

fondee sur les Diagrammes de Decision Binaire. Ph.D. thesis, Universite de Privence, France,

1999.

12. Bryant, R.: Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput,
C35(8) (1986), 677Y691.

48 GUOQIANG PAN AND MOSHE Y. VARDI



13. Burch, J., Clarke, E. and Long, D.: Symbolic model checking with partitioned transition

relations, in VLSI 91, Proc. IFIP TC10/WG 10.5 International Conference on Very Large
Scale Integration, Edinburgh, Scotland, 20Y22 August, 1991, pp. 49Y58

14. Burch, J., Clarke, E., McMillan, K., Dill, D. and Hwang, L.: Symbolic model checking: 1020

states and beyond, Inf. Comput. 98(2) (1992), 142Y170.

15. Chatalic, P. and Simon, L.: Multi-resolution on compressed sets of clauses, in Twelfth
International Conference on Tools with Artificial Intelligence (IXTAI’00), 2000, pp. 2Y10.

16. Chung, P., Hajj, I. and Patel, J.: Efficient variable ordering heuristics for shared ROBDD, in

Proc. 1993 IEEE Int. Symp. on Circuits and Systems (ISCA93), 1993, pp. 1690Y1693.

17. Cimatti, A. and Roveri, M.: Conformant planning via symbolic model checking, J. Artif.
Intell. Res. 13 (2000), 305Y338

18. Clarke, E., Grumberg, O. and Peled, D.: Model Checking, MIT Press, 1999.

19. Coarfa, C., Demopoulos, D. D., San Miguel Aguirre, A., Subramanian, D. and Vardi, M.:

Random 3-SAT: the plot thickens, Constraints (2003), 243Y261.

20. Crawford, J. and Baker, A.: Experimental results on the application of satisfiability

algorithms to scheduling problems, in Proc. 12th Nat. Conf. on Artificial Intelligence, Vol.
2, 1994, pp. 1092Y1097.

21. Dalmau, V., Kolaitis, P. and Vardi, M.: Constraint satisfaction, bounded treewidth, and finite-

variable logics, in Proceedings of 8th Int. Conf. on Principles and Practice of Constraint
Programming (CP 2002), 2002, pp. 310Y326.

22. Damiano, R. F. and Kukula, J. H.: Checking satisfiability of a conjunction of BDDs, in: Proc.
40th Design Automation Conference (DAC 2003), 2003, pp. 818Y823.

23. Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem proving.

J. ACM 5 (1962), 394Y397.

24. Davis, S. and Putnam, M.: A computing procedure for quantification theory, J. ACM 7

(1960), 201Y215.

25. Dechter, R.: Constraint Processing, Morgan Kaufmann, 2003.

26. Dechter, R. and Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif.
Intell. 34 (1987), 1Y38.

27. Dechter, R. and Rish, I.: Directional resolution: the DavisYPutnam procedure, revisited, in

KR’94: Principles of Knowledge Representation and Reasoning, 1994, pp. 134Y145.

28. Downery, R. and Fellows, M.: Paraetrized Complexity, Springer-Verlag, 1999.

29. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M. and Vanfleet, W.:

SBSAT: a state-based, BDD-based satisfiability solver, in Proc. 6th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT 2003), 2003, pp. 398Y410.

30. Freuder, E.: Complexity of k-tree structured constraint satisfaction problems, in Proc. 8th
Nat. Conf. on Artificial Intelligence, 1990, pp. 4Y9.

31. Fujita, M., Fujisawa, H. and Kawato, N.: Evaluation and improvements of Boolean

comparison method based on binary decision disgrams, in Proc. IEEE/ACM Int. conf. on
Computer-Aided Design (ICCAD-88), 1988, pp. 2Y5.

32. Geist, D. and Beer, H.: Efficient model checking by automated ordering of transition relation

partitions, in Proc. 6th Int. Conf. on computer Aided Verification (CAV 1994), 1994, pp.
299Y310.

33. Goldberg, E. and Novikov, Y.: BerkMin: a fast and robust SAT solver, in Proc. Design
Automation and Test in Europe (DATE 2002), 2002, pp. 142Y149.

34. Groote, J. F.: Hiding propositional constants in BDDs, FMSD 8 (1996), 91Y96.

35. Gupta, A., Yang, Z., Ashar, P., Zhang, L. and Malik, S.: Partition-based decision heuristics

for image computation using SAT and BDDs, in: Proc. IEEE/ACM Int. Conf. on Computer-
Aided Design (ICCAD-01), 2001, pp. 286Y292.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 49



36. Hojati, R., Krishman, S.C. and Brayton, R.K.: Early quantification and partitioned transition

relations, in Proc. 1996 Int. Conf. on Computer Design (ICCD’96), 1996, pp. 12Y19.

37. Huang, J. and Darwiche, A.: A structure-based variable ordering heuristic for SAT, in Proc.
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), 2003, 1167Y1172.

38. Jon, H. and Somenzi, F.: CirCUs: hybrid satisfiability solver, in Proc. of the 7th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT 2004), 2004, pp. 47Y55.

39. Kautz, H. and Selman, B.: Planning as satisfiability, in Proc. 10th Eur. conf. on AI (ECAI 92),
1992, pp. 359Y363.

40. Khurshid, S., Marinov, D., Shlyyakhter, I. and Jackson, D.: A case for efficient solution

enumeration, in Proc. 6th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT
2003), 2001, pp. 272Y286.

41. Koster, A., Bodlaender, H. and van Hoesel, S.: Treewidth: computational experiments.

Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin.

42. Le Berre, D. and Simon, L.: The essentials of the SAT’03 competition, in Proc. 6th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT 2003), 2003, pp. 452Y467.

43. Malik, S., Wang, A., Brayton, R. and Sangiovanni Vincentelli, A.: Logic verification using

binary decision diagrams in a logic synthesis environment, in: Proc. IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD-88), 1988, pp. 6Y9.

44. Minato, S.: Binary Decision Diagrams and Applications to VLSI CAD. Kluwer, 1996.

45. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Chaff: engineering an

efficient SAT solver, in Proc. of 39th Design Automation Conference (DAC 2001), 2001,
pp. 530Y535.

46. Motter, D.B. and Markov, I.L.: A compressed breadth-first search for satisfiability, in Proc.
4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002), Vol. 2409 of

Lecture Notes in Computer Science, 2002, pp. 29Y42.

47. Motter, D.B. and Markov, I.L.: On proof systems behind efficient SAT solvers, in Proc. of
5th Int. Symp. on the Theory and Applications of Satisfiability Testing (SAT 2002), 2002,
pp. 206Y213.

48. Pan, G. and Vardi, M.Y.: Symbolic decision procedures for QBF, in Proceedings of 10th Int.
Conf. on Principles and Practice of Constraint Programming (CP 2004), 2004, pp. 453Y467.

49. Ranjan, R., Aziz, A., Brayton, R., Plessier, B. and Pixley, C.: Efficient BDD algorithms for FSM

synthesis and verification, in Proc. of IEEE/ACM Int. Workshop on Logic Synthesis, 1995.

50. San Miguel Aguirre, A. and Vardi, M.Y.: Random 3-SAT and BDDs: the plot thickens

further, in Proc. of the 7th Int. Conf. Principles and Practice of Constraint Programming (CP
2001), 2001, pp. 121Y136.

51. Schaefer, T.: The Complexity of satisfiability problems, in Proc. of the 10th annual ACM
symposium on Theory of Computing (STOC’78), 1978, pp. 216Y226.

52. Selman, B., Mitchell, D. G. and Levesque, H. J.: Generating hard satisfiability problems,

Artif. Intell. 81(1Y2) (1996), 17Y29.

53. Somenzi, F.: FCUDD: CU Decision Diagram package_. http://vlsi.colorado.edu/~fabio/

CUDD/, 1998.

54. Tarjan, R. E. and Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs,

tests acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.
13(3) (1984), 566Y579.

55. Uribe, T.E. and Stickel, M.E.: Ordered binary decision diagrams and the DavisYPutnam
procedure, in 1st Int. Conf. on Constraints in Computational Logics, 1994, pp. 34Y39.

56. Urquhart, A.: The complexity of propositional proofs, Bull. Symb. Log. 1 (1995), 425Y467.

50 GUOQIANG PAN AND MOSHE Y. VARDI



Exponential Lower Bounds for the Running Time

of DPLL Algorithms on Satisfiable Formulas
j

MICHAEL ALEKHNOVICH1,., EDWARD A. HIRSCH2,-

and DMITRY ITSYKSON3,`

1Institute for Advanced Study, Princeton, NJ, USA. e-mail: misha@ias.edu
2St. Petersburg Department of Steklov, Institute of Mathematics, St. Petersburg, 191011, Russia.
e-mail: hirsch@pdmi.ras.ru
3Faculty of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia.
e-mail: dmitrits@mail.ru

Abstract. DPLL (for Davis, Putnam, Logemann, and Loveland) algorithms form the largest

family of contemporary algorithms for SAT (the propositional satisfiability problem) and are

widely used in applications. The recursion trees of DPLL algorithm executions on unsatisfiable

formulas are equivalent to treelike resolution proofs. Therefore, lower bounds for treelike

resolution (known since the 1960s) apply to them. However, these lower bounds say nothing about

the behavior of such algorithms on satisfiable formulas. Proving exponential lower bounds for

them in the most general setting is impossible without proving P m NP; therefore, to prove lower

bounds, one has to restrict the power of branching heuristics. In this paper, we give exponential

lower bounds for two families of DPLL algorithms: generalized myopic algorithms, which read up

to n1j� of clauses at each step and see the remaining part of the formula without negations, and

drunk algorithms, which choose a variable using any complicated rule and then pick its value at

random.

Key words: satisfiability, DPLL algorithms.

1. Introduction

SAT solving heuristics. The propositional satisfiability problem (SAT) is one of

the most well-studied NP-complete problems. In this problem, one is asked

whether a Boolean formula in conjunctive normal form (a conjunction of clauses,
which are disjunctions of literals, which are variables or their negations) has an

j Extended abstract of this paper appeared in Proceedings of ICALP 2004, LNCS 3142,

Springer, 2004, pp. 84Y96.
. Supported by CCR grant NCCR-0324906.
- Supported in part by Russian Science Support Foundation, RAS program of fundamental

research BResearch in principal areas of contemporary mathematics,^ and INTAS grant N
04-77-7173.

` Supported in part by INTAS grant N 04-77-7173.

Journal of Automated Reasoning (2005) 35: 51Y72
DOI: 10.1007/s10817-005-9006-x

# Springer 2006



assignment that satisfies all its clauses. Despite the P m NP conjecture, there are

numerous algorithms for SAT (motivated, in particular, by its importance for

applications). DPLL algorithms (defined below) are based on the most popular

approach that originates in the papers by Davis, Putnam, Logemann, and

Loveland [9, 10]. Very informally, these algorithms use a Fdivide-and-conquer_
strategy: they split a formula into two subproblems by fixing a value of some

literal, and then they recursively process the arising formulas. These algorithms

received much attention of researchers both from theory and practice and are

heavily used in the applications.

Lower bounds for resolution and the running time of DPLL algorithms. Proposi-

tional proof systems form one of the simplest and the most studied model in

propositional calculus. Given a formula F, a propositional proof system allows to

show that F is unsatisfiable. For example, using the well-known x¦C1; :x¦C2

C1¦C2
, one

can nondeterministically build a resolution refutation of F, which may be used as

a certificate of unsatisfiability for the formula F. The size of the minimum tree-

like resolution refutation and the running time of DPLL algorithms are related by

the following well-known statement.

FACT 1. For each unsatisfiable formula the shortest treelike resolution proof is
at most polynomially longer than the smallest recursion tree of a DPLL al-
gorithm, and vice versa.

Therefore, (sub)exponential lower bounds for treelike resolution (starting with

Tseitin’s bounds [16] and finishing with quite strong bounds of [14]) imply that

any DPLL algorithm should take exponentially long to prove that the

corresponding formulas are unsatisfiable. However, these results say nothing in

the case of satisfiable formulas. There are several reasons why the performance

may differ on satisfiable and unsatisfiable instances:

Y Experiments show that contemporary SAT solvers are able to solve much

larger satisfiable formulas than unsatisfiable ones [15].
Y Randomized one-sided error algorithms fall out of scope because they do not

yield proofs of unsatisfiability.
Y If a DPLL algorithm is provably efficient (i.e., takes polynomial time) on

some class of formulas, then one can interrupt the algorithm running on a

formula from this class after a sufficiently large number of steps if it has not

found a satisfying assignment. This will result in a certificate of unsatisfi-

ability that can be much smaller than the minimum treelike resolution

refutation.

Previously known lower bounds for satisfiable formulas. Despite the importance

of this problem, only few works have addressed the question of the worst-case

52 MICHAEL ALEKHNOVICH ET AL.



running time of SAT algorithms on satisfiable formulas. There have been two

papers [4, 11] on (specific) local search heuristics; as to DPLL algorithms, all we

know are the bounds of [1, 2, 13].

In the work of Nikolenko [13] exponential lower bounds are proved for two

specific DPLL algorithms (called GUC and Randomized GUC) on specially

tailored satisfiable formulas.

Achlioptas, Beame, and Molloy [1] prove the hardness of random formulas in

3-CNF with n variables and cn (c < 4) clauses for three specific DPLL algorithms

(called GUC, UC, and ORDERED-DLL). It is an open problem to prove that these

formulas are satisfiable (though it is widely believed they are). Recently, the

same authors [2] have proved an unconditional lower bound on satisfiable

random formulas in 4-CNF for ORDERED-DLL. The latter result states that

ORDERED-DLL takes exponential time with constant (rather than exponentially

close to 1) probability.

Our contribution. Proving such bounds for DPLL algorithms in a greater gen-

erality is the ultimate goal of the present paper. We design two families of sat-

isfiable formulas and show lower bounds for two general classes of algorithms

(see Section 2.1 for precise definitions).

The first class of formulas simply encodes a linear system Ax = b that has a

unique solution over GF2, where A is a Fgood_ expander. We prove that any

generalized myopic DPLL algorithm that has a local access to the formula (i.e.,

can read up to n1j� clauses at every step) with high probability has to make an

exponential number of steps before it finds a satisfying assignment.

In our second result we describe a general way to cook a satisfiable for-

mula out of any unsatisfiable formula hard for treelike resolution so that the

resulting formula is hard for any drunk DPLL algorithm that chooses a var-

iable in an arbitrarily complicated way and then tries both its values in a random

order.

Both classes of algorithm that we consider are classical DPLL backtracking

algorithms and, in general, are much less restricted than those studied before.

Organization of the paper. Section 2 contains basic notation and the rigorous

definitions of DPLL algorithms that we consider. In the subsequent two sections

we present our two main results. We discuss their possible extensions and open

questions in Section 5.

2. Preliminaries

Let x be a Boolean variable, that is, a variable that ranges over the set {0, 1}. A

literal of x is either x or Kx. A clause is a disjunction of literals (considered as a

set). A formula in this paper refers to a Boolean formula in conjunctive normal

form, that is, a conjunction of clauses (a formula is considered as a multiset). A

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 53



formula in k-CNF contains clauses of size at most k. We use the notation

Vars(F), Vars(Ax = b) to denote the set of variables occurring in a Boolean

formula, in a system of equations, and so on.

An elementary substitution v := " just chooses a Boolean value, namely, " 2
{0, 1}, for a variable, namely, v. A substitution (also called a partial assignment)
is a set of elementary substitutions for different variables. The result of applying

a substitution r to a formula F (denoted by F[r]) is a new formula obtained from

F by removing the clauses containing literals satisfied by r and removing the

opposite literals from other clauses.

We say that an assignment a satisfies a Boolean function f if f(a) = 1. For

Boolean functions f1, . . . , fk, g we say that f1, . . . , fk semantically imply g,
(denoted f1, . . . , fk î g), if every assignment to the variables in V = Vars( f1)
[ . . .[ Vars( fk) [ Vars(g) satisfying f1, . . . , fk, satisfies g as well (i.e., Oa 2
{0, 1}V ( f1(a) = I I I = fk(a) = 1 Á g(a) = 1)).

For a nonnegative integer n, let [n] = {1,2, . . . n}. For a vector v = (v1, . . . , vm)
and index set I � [m] we denote by vI the subvector with coordinates chosen

according to I. For a matrix A and a set of rows I � [m] we use the notation AI for

the submatrix of A corresponding to these rows. In particular, we denote the ith
row of A by Ai and identify it with the set {j ª Aij = 1}. The cardinality of this set

is denoted by ªAiª.

2.1. DPLL ALGORITHMS: GENERAL SETTING

A DPLL algorithm is a recursive algorithm. At each step, it simplifies the input

formula F (without affecting its satisfiability), chooses a variable v in it, and

makes two recursive calls for the formulas F[v := 1] and F[v := 0] in some order;

it outputs FSatisfiable_ iff at least one of the recursive calls says so (there is no

reason to make the second call if the first one was successful). The recursion

proceeds until the formula trivializes, that is, it becomes empty (hence, satis-

iable) or one of the clauses becomes empty (hence, the formula is unsatisfiable).

A DPLL algorithm is determined by its simplification rules and two

heuristics: Heuristic A, which chooses a variable, and Heuristic B, which

chooses its value to be examined first. A formal description is given in Figure 1.

Note that if P = NP and Heuristic B is not restricted, it can simply choose the

correct values, and the algorithm will terminate quickly. Therefore, in order to

prove unconditional lower bounds one has to restrict the simplification rules and

heuristics and prove the result for the restricted model. In this paper, we consider

two models: generalized myopic algorithms and drunk algorithms. Both models

extend the original algorithm of [9], which uses the unit clause and pure literal

rules and no nontrivial Heuristics A and B.

Drunk algorithms. Heuristic A of a drunk algorithm can be arbitrarily com-

plicated (even nonrecursive). This feature is compensated by the simplicity

54 MICHAEL ALEKHNOVICH ET AL.



of Heuristic B: it chooses 0 or 1 at random. The simplification rules are as

follows.

Unit clause elimination. If the formula F contains a clause that consists of a

single literal l, replace F by F[l := 1], where l := 1 denotes the elementary

substitution that satisfies the literal l.

Pure literal elimination. If the formula F contains a literal l such that its

negation does not occur in any clause,j replace F by F[l := 1].

Subsumption. If the formula F contains a clause that contains another clause as

a subset, delete the larger clause.

Note that Randomized GUC with pure literal elimination considered in [13]

is a drunk algorithm (that does not use subsumption).

In Section 4 we prove an exponential lower bound on the running time of

drunk algorithms on satisfiable formulas obtained by a simple construction that

uses (known) hard unsatisfiable formulas.

Myopic algorithms. Both heuristics are restricted w.r.t. the parts of formula that

they can read (this can be viewed as accessing the formula via an oracle).

Heuristic A can read

Y K(n) clauses of the formula (where n is the number of variables in the

original input formula and K(n) = n1j� is a function with � > 0);

Figure 1. A DPLL algorithm.

j An occurrence of a positive literal is an occurrence of the corresponding variable without
the negation.

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 55



Y the formula with negation signs removed;
Y the number of occurrences of each literal.

Heuristic B may use the information obtained by Heuristic A. The infor-

mation revealed about the formula can be used in the subsequent recursive calls

(but not in other branches of the recursion tree).

The only simplification rule is pure literal elimination. Also the unit clause

elimination can be easily implemented by choosing the proper variable and

value. In particular, heuristics ORDERED-DLL, GUC, and UC considered in [1]

yield generalized myopic algorithms. Note that our definition generalizes the

notion of myopic algorithms introduced in [3].

Formally, the heuristics are unable to read all clauses containing a variable if

this variable is too frequent. However, it is easy to see that we can restrict our

hard formulas (that we use for proving our exponential lower bound) so that

every variable occurs O(log n) times; see Remark 1.

In Section 3 we prove an exponential lower bound on the running time of

myopic algorithms on satisfiable formulas based on expanders.

2.2. DPLL RECURSION TREE

A DPLL recursion tree is a binary tree (a node may have zero, one, or two

children) in which nodes correspond to the intermediate subproblems that arise

after the algorithm makes a substitution, and edges correspond to the recursive

calls on the resulting formulas. The computation of a DPLL algorithm thus can

be considered as a depth-first traversal of the recursion tree from the left to the

right; in particular, the rightmost leaf always corresponds to the satisfying

assignment (if any). The overall running time is proportional to the size of the

tree.

For a node v in the computation tree by rv we denote the partial assignment

that was set prior to visiting v. Thus the algorithm at v works on the subformula

F[rv].

2.3. EXPANDERS

An expander is a bounded-degree graph that has many neighbors for every

sufficiently small subset of its nodes. Similarly to [5], we use a more general

notion of expander as an m � n matrix. There are two notions of expanders:

expanders and boundary expanders. The latter notion is stronger as it requires the

existence of unique neighbors. However, every good expander is also a boundary

expander.

DEFINITION 1. For a set of rows I � [m] of an m � n matrix A, we define

its boundary ¯AI (or just ¯I) as the set of all j 2 [n] (called boundary elements)

56 MICHAEL ALEKHNOVICH ET AL.



such that there exists exactly one row i 2 I that contains j. We say that A is an

(r, s, c)-boundary expander if

1. ªAiª e s for all i 2 [m], and
2. OI � [m] (ªIª e r Á ª¯Iª Q c I ªIª).

Matrix A is an (r, s, c)-expander if condition 2 is replaced by

20. OI � [m] (ªIª e r Á ª[i2I Aiª Q c I ªIª).

We define the boundary and boundary elements of equation(s) in a linear

system Ax = b similarly to those of rows in a matrix A.

LEMMA 1. Any (r, 3, c) -expander is an (r, 3, 2cj3) -boundary expander.

Proof. Assume that A is (r, 3, c)-expander. Consider a set of its rows I with
ªIª e r. Since A is an expander, ª[i2I Aiª Q cªIª. On the other hand we may

estimate separately the number of boundary and nonboundary variables, which

will give ª[i2I Aiª e E + (3ªIª j E)/2, where E is the number of boundary

variables. This implies E + (3ªIª j E)/2 Q cªIª and E > (2c j 3)ªIª. Ì

3. An Exponential Lower Bound for Myopic Algorithms

In this section, we prove an exponential lower bound on the running time of

generalized myopic algorithms (described in Section 2.1) on satisfiable formulas.

The proof strategy is as follows. We take a full-rank n � n 0/1-matrix A having

certain expansion properties and construct a uniquely satisfiable Boolean formula

F expressing the statement Ax = b (modulo 2) for some vector b. Then we prove

that if one obtains an unsatisfiable formula from F using a reasonable sub-

stitution, the resulting formula is hard for treelike resolution (the proof is similar

to that of [8]). Finally, we show that changing several bits in the vector b, while
changes the satisfying assignment, does not affect the behavior of a generalized

myopic algorithm that did not reveal these bits, which implies it encounters a

hard unsatisfiable formula on its way to the satisfying assignment.

In what follows, we prove the existence of appropriate expanders (Section 3.1)

and examine their properties (Section 3.2). Then we give the construction of the

corresponding Boolean formulas (Section 3.3) and prove the statement con-

cerning the behavior of a generalized myopic algorithm on unsatisfiable formulas

(Section 3.4). Finally, we prove our main result of this section (Section 3.5).

3.1. THE EXISTENCE OF APPROPRIATE EXPANDERS

We now prove the existence of expanders that we use to construct satisfiable

formulas hard for myopic DPLL algorithms.

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 57



THEOREM 1. For every sufficiently large n, there exists an n � n nondege-
nerate matrix A(n) such that A(n) is an (n/log14 n, 3, 25/13)-expander.

Let
� ½n�

3

�
be the set of all {0, 1}n-vectors of Hamming weight 3 (i.e., con-

taining exactly three 1’s). We use a probabilistic construction. The rows of a

larger matrix are drawn at random from the set of all vectors of Hamming weight

3; then we choose a submatrix of the appropriate size. In order to establish the

goal, we prove two lemmas.

LEMMA 2. Let A be a Dn �n matrix (D may depend on n) in which each row is
randomly chosen from

� ½n�
3

�
. Assume that c < 2 is a constant and r ¼ 0 n

�1= 2�cð Þ

� �
.

Then with probability 1Yo(1) the matrix A is an (r, 3, c)-expander.

Proof. The probability pt of the event that there exists a subset of rows I of
size t e r and a subset of columns J � AI of size )ct 2 is upper bounded as

pt e
�n
t

� �
n
bctc

� ��
ct

n

�3t

e
e�n

t

� �t� en

ct

�ct�
ct

n

�3t

¼ e1þcc3�c�
n

t

� �c� 2
� 	t

e e 1þcð Þ= 2� cð Þc 3� cð Þ= 2�cð Þr
�1= 2� cð Þ

n

� 	 2�cð Þt
:

Clearly, p1 = o(1). Since for sufficiently large n,
Pr

t¼ 1 pt 	 2p1, the lemma

follows. Ì

LEMMA 3. Let L be a linear subspace of {0, 1}n of codimension k. Let vector v
be chosen uniformly at random from

� ½n�
3

�
. Then Pr v =2 L½ � ¼ W k

n

� �
.

Proof. L can be specified as a kernel of a k � n matrix M of full rank (i.e.,

L = {uªMu = 0}). The product Mu is distributed as a sum of three columns

randomly chosen (without replacement) from the matrix M; we need to estimate

the probability that this sum equals zero. Let Mi1 ; Mi2 ; Mi3 be the three randomly

chosen columns of M. Ì

Case 1: k Q 3. In this case, consider the vector u ¼ Mi1 þ Mi2 . Since rk M = k,
there are at least k j 2 other columns in M different from u. Thus, Mi3 6¼ u with

probability at least k� 2
n .

Case 2: k < 3.

Case 2a: M j1 j2 Oj ( j =2 {j1, j2} Á Mj ¼ Mj1 þMj2 ). Since rk M > 0, either

Mi1or Mi2 is nonzero. With probability 1/n the nonzero the first column. If this

happens, then with probability at least n� 2
n� 1

 n� 3
n� 2

the second and the third column

are chosen from those equal to Mi1 þMi2 . Thus, with probability at least 1
n 


n� 2
n� 1

 n� 3
n� 2

Q 1
2n Mi1 þMi2 þMi3 6¼ 0.

58 MICHAEL ALEKHNOVICH ET AL.



Case 2b: The condition of case 2a does not hold. Consider the vector

u ¼ Mi1 þMi2 . By our assumption, there is at least one column j =2 {i1, i2}
different from u. With probability at least 1

n� 2
this column will be chosen as the

third one.

Proof of Theorem 1. The estimation of the number Dn of random vectors that

suffices to obtain a Dn � n matrix of full rank resembles the analysis of the well-

known Fcoupon collector_ problem. Let S0 ¼ ;; Siþ 1 ¼ Si [ vif g; vi 2U
� ½n�

3

�
: Let

T be the first step when the vector system ST is complete. One can easily see that

the expectation of T is O(n log n): Lemma 3 shows that if the dimension of

Span(Sk) is t, then dim Span(Sk + 1) = t + 1 with probability W n�t
n

� �
. Thus O

�
n

n�t
�

steps suffice on average to increase the dimension from t to t + 1. By linearity of

expectation,

ET 	 O
n

n
þ n

n� 1
þ n

n� 2
þ . . .þ n

1

� �
¼ O n log nð Þ:

Let a0 be the constant in the O(I) notation above, that is, ET e a0n log n. Let
a00 ¼ a 0

� (we will choose � later). By Markov inequality,

Pr T > a00n log nf g < �:

Let us choose � and �0 so that � + �0 < 1. For sufficiently large n, Lemma 2

guarantees that A is an (n/log14 n, 3, 25/13)-expander with probability at least 1

j �0. By the above reasoning, also rk A = n with a positive probability. Thus, we

can choose n linear independent rows of A; the resulting n � n matrix is an

(n/log14 n, 3, 25/13)-expander. Ì

Remark 1. It is easy to see that one can add an additional requirement: for every

column j, there is only O(log n) rows Ai such that Aij = 1. Using such expanders

would result in hard formulas with only O(log n) occurrences of every variable.

3.2. CLOSURE OPERATORS

Throughout this section, A denotes an (r, 3, c)-boundary expander. We need two

operations of taking closure of a set of columns w.r.t. matrix A. The first was

defined in [7].

DEFINITION 2. Let A 2 {0, 1}m�n. For a set of columns J � [n] define the

following inference relation ïJ on the sets [m] of rows of A:

I ‘J I1, I1j j 	 r=2 ^ @A I1ð Þ �
[
i2I

Ai [ J

" #
: ð1Þ

That is, we allow rows of A to be derived from already derived rows. We can

use these derived rows in further derivations (for example, derive new rows from

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 59



I [ I1). Let the closure Cl(J) of J be the set of all rows which can be inferred via

ïJ from the empty set.

The following lemma was proved in ([7], Lemma 3.16).

LEMMA 4. For any set J with ªJª e (cr/2), ªCl(J)ª e r/2.

We also need another (stronger) closure operation the intuitive sense of which

is to extract a good expander out of a given matrix by removing rows and

columns.

DEFINITION 3. For an A 2 {0, 1}m � n and a subset of its columns J � [n] we
define an inference relation ïJ

0 on subsets of rows of A:

I ‘0JI1, I1j j 	 r=2 ^ @A I1ð Þn
[
i2I

Ai [ J

" #










 < c=2 I1j j: ð2Þ

Given a set of rows I and a set of columns J, consider the following cleaning

step:

Y If there exists a nonempty subset of rows I1 such that I ïJ
0 I1, then

� Add I1 to I.
� Remove all rows corresponding to I1 from A.

Repeat the cleaning step as long as it is applicable. Fix any particular order on

the sets to exclude ambiguity, initialize I = ;, and denote the resulting content of

I at the end by Cle(J).

LEMMA 5. Assume that A is an arbitrary matrix and J is a set of its columns.
Let I0 = Cle(J), J0 ¼ Si2Cle Jð Þ Ai. Denote by Â the matrix that results from A by
removing the rows corresponding to I

0
and columns to J

0
. If Â is nonempty, then

it is an (r/2, 3, c/2)-boundary expander.

Proof. Follows immediately from the definition of Cle. Ì

LEMMA 6. If ªJª < cr/4, then ªCle(J)ª < 2cj1ªJª.
Proof. Assume that ªCle(J)ª Q 2cj1ªJª. Consider the sequence I1, I2, . . . ,

It appearing in the cleaning procedure; that is,

I1 [ I2 [ . . . [ Ik ‘0JIkþ 1:

Note that Ii \ Ii0 ¼ ; for i 6¼ i0 because we remove the implied set of rows

from A at each cleaning step. Denote by Ct ¼
St

k¼ 1 Ik the set of rows derived in

t steps.

60 MICHAEL ALEKHNOVICH ET AL.



Let T be the first t such that ªCtª Q 2cj1ªJª. Note that ªCTª e 2cj1ªJª +

r/2 e r, hence ªJª < cr/4 e cªCTª/4. Because of the expansion properties of A,
¯CT Q cªCTª, which implies

@CTnJj j � c CTj j � Jj j > c CTj j=2: ð3Þ
On the other hand, every time we add some It+1 to Ct during the cleaning

procedure, only c/2ªIt+1ªnew elements can be added to ¯Ct\ J (of those elements

that have never been there before). This implies

@CTnJj j 	 c CTj j=2;
which contradicts (3). Ì

3.3. HARD FORMULAS BASED ON EXPANDERS

Let A be an n � n matrix provided by Theorem 1; let also r = n/log14 n, c0 = 25/

13 be the parameters of the theorem. Denote c = 2c0j3 (thus A is an (r, 3, c)-
boundary expander).

DEFINITION 4. Let b be a vector from {0, 1}n. Then F (b) is the formula

expressing the equality Ax = b (modulo 2); in other words, every equation

aij1xj1 þ aij2xj2 þ aij3xj3 ¼ bi is transformed into the 4 clauses on xj1 ; xj2 ; xj3
satisfying all its solutions. Sometimes we identify an equation with the cor-

responding clauses.

Remark 2. The formula F(b) has several nice properties that we use in our

proofs. First, note that F(b) has exactly one satisfying assignment (since rk A =

n). It is also clear that a myopic DPLL algorithm has no reasonable chance to

apply pure literal elimination to it because, for any substitution r, the formula

F(b)[r] never contains a pure literal unless this pure literal is contained in a unit

clause. Moreover, the number of occurrences of a literal in F(b)[r] always

equals the number of occurrences of the opposite literal (recall that a formula is a

multiset of clauses); again the only exception is literals occurring in unit clauses.

To the abuse of notation we identify j 2 J (where J is a set of columns of A)
with the variable xj.

3.4. BEHAVIOR OF MYOPIC ALGORITHMS ON UNSATISFIABLE FORMULAS

DEFINITION 5. A substitution r is said to be locally consistent w.r.t. the linear

system Ax = b if and only if r can be extended to an assignment on X that

satisfies the equations corresponding to Cl(r):

ACl �ð Þx ¼ bCl �ð Þ:

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 61



LEMMA 7. Assume that A is (r, 3, c)-boundary expander. Let b 2 {0, 1}m; r is
a locally consistent partial assignment. Then for any set I � [m] with ªIª e r/2,
r can be extended to an assignment x that satisfies the subsystem AIx = bI.

Proof. Assume for the contradiction that there exists set I for which r cannot

be extended to satisfy AIx = bI; choose the minimal such I. Then ¯A(I) � Vars(r);
otherwise one could remove an equation with boundary variable in ¯A(I)\Vars(r)
from I. Thus, Cl(r) � I, which contradicts Definition 5. Ì

The width [8] of a resolution proof is the maximal length of a clause in the

proof. We need the following lemma, which is a straightforward generalization

of ([8], Theorem 4.4).

LEMMA 8. For any matrix A that is an (r, 3, c)-boundary expander and any
vector b =2 Im(A), any resolution proof of the system

Ax ¼ b ð4Þ

must have width at least cr/2.
Proof. For a clause C define Ben-SassonYWigderson measure as

� Cð Þ ¼ min
AIx¼ bIð ÞîC

Ij j:

Similar to the proof of ([8], Theorem 4.4), m is a subadditive measure, for

any D appearing in the translationj of Equation (4) to CNF m(D) = 1 and m(;) Q r
(the latter inequality follows from the fact that any set I0 (I0 î ;) with ªI0ª < r
has a nonempty boundary, and an equality containing a boundary variable can be

removed from the subsystem AI0x ¼ bI0 , leaving it still contradictory).

It follows that any resolution refutation of the system (4) contains a clause C
s.t. r/2 e m(C) < r. Consider a minimal I s.t. (AIx = bI) î C. As in [8] we claim

that C has to contain all variables corresponding to ¯A(I). Indeed, if there exists a
boundary variable in the equation Aix = bi (i 2 I) not included in C, then we may

remove this equation so that (A[I\i]x = b[I\i]) î C. Thus, C contains all boundary

variables of I, and there are at least cªIª Q cr/2 of them. Ì

We also need the following lemma from [8].

LEMMA 9 ([8], Corollary 3.4). The size of any treelike resolution refutation of
a formula � is at least 2w�w� , where w is the minimal width of a resolution
refutation of �, and w� is the maximal length of a clause in �.

j See Definition 4.

62 MICHAEL ALEKHNOVICH ET AL.



LEMMA 10. If a locally consistent substitution r s.t. ªVars(r)ª e cr/4 results
in an unsatisfiable formula F(b)[r], then every generalized myopic DPLL
algorithm will take 2W(r) time on F (b)[r].

Proof. The work of any DPLL algorithm on an unsatisfiable formula can be

translated to treelike resolution refutation so that the size of the refutation is the

working time of the algorithm. Thus, it is sufficient to show that the minimal

treelike resolution refutation size of F(b)[ r] is large.
Denote by I = Cle(r), J = [i2I Ai. By Lemma 6 ªIª e r/2. By Lemma 7 r can

be extended to another partial assignment r0 on variables xJ, s.t. r0 satisfies every
linear equation in AIx = bI. The restricted formula Ax ¼ bð Þ j �0 still encodes an
unsatisfiable linear system, A0 x = b0, where matrix A0 results from A by removing

rows corresponding to I and variables corresponding to J. By Lemma 5, A0 is an
(r/2, 3, c/2)-boundary expander. Lemmas 8 and 9 now imply that the minimal

treelike resolution refutation of the Boolean formula corresponding to the system

A0x = b0 has size 2W(r). Ì

3.5. BEHAVIOR OF MYOPIC ALGORITHMS ON SATISFIABLE FORMULAS

We fix A, r, c, c0 of Section 3.3 and m = m(n) = n throughout this section.

THEOREM 2. For every deterministic generalized myopic DPLL algorithm A
that reads at most K = K(n) clauses per step, A stops on F(b) in 2o(r) steps with
probability 2�W r=Kð Þ. The probability is taken over b uniformly distributed on
{0, 1}n.

COROLLARY 1. Let A be any (randomized) generalized myopic DPLL
algorithm that reads at most K = K(n) clauses per step. A stops on F(b) (a
satisfiable formula in 3-CNF containing n variables and 4n clauses, described
in Section 3.3) in 2o nlog�14nð Þ steps with probability 2�W K�1n log�14nð Þ (taken over
random bits used by the algorithm and over b uniformly distributed on {0, 1}n).

Proof. [Proof of Theorem 2]. The proof strategy is to show that during its

very first steps the algorithm does not get enough information to guess a cor-

rect substitution with nonnegligible probability. Therefore, the algorithm chooses

an incorrect substitution and has to examine an exponential-size subtree by

Lemma 10.

Without loss of generality, we assume that our algorithm is a clever myopic
algorithm. We define a clever myopic algorithm w.r.t. matrix A as a generalized

myopic algorithm (defined as in Section 2.1) that

Y has the following ability: whenever it reveals occurrences of the variables xJ
(at least one entry of each), it can also read all clauses in Cl(J) for free and

reveal the corresponding occurrences;

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 63



Y never asks for a number of occurrences of a literal (syntactical properties of

our formula imply that A can compute this number itself: the number of

occurrences outside unit clauses does not depend on the substitutions that A
has made; all unit clauses belong to Cl(J));

Y always selects one of the revealed variables;
Y never makes stupid moves: whenever it reveals the clauses C! and chooses

the variable xj for branching, it makes the right assignment xj = � in the case

when C! semantically imply xj = � (this assumption can save only the

running time). Ì

PROPOSITION 1. After the first cr
6K

� �
steps a clever myopic algorithm reads at

most r/2 bits of b.

Proof. At each step the algorithm makes K clause queries, asking for 3K
variable entries. This will sum up to 3K (cr/(6K)) variables, which will result by

Lemma 4 in at most r/2 revealed bits of b. Ì

Recall that an assignment r is locally consistent if it can be extended to an

assignment that satisfies ACl(r)x = bCl(r).

PROPOSITION 2. During the first cr
6K

� �
steps the current partial assignment

made by a clever myopic algorithm is locally consistent (in particular, the
algorithm does not backtrack).

Proof. The statement follows by repeated application of Lemma 7. Note that

the definition of clever myopic algorithm requires that it choose a locally con-

sistent assignment if possible.

Formally we prove the proposition by induction. In the beginning of the

execution the current partial assignment is empty; hence it is locally consistent.

By the definition of a clever myopic algorithm, whenever it makes a step t
(where t < cr

6K

� �
) having a locally consistent partial assignment rt it extends this

assignment to an assignment rt+ 1 that is also locally consistent if possible. By

Lemma 7 it can always do so as long as ªCl(Vars(rt) [ {xj})ª e r/2 for the

newly chosen variable xj. Ì

Assume now that b chosen at random is hidden from A. Whenever an

algorithm reads the information about a clause corresponding to the linear

equation Aix = bi, it reveals the ith bit of b. Let us observe the situtation after the

first cr
6K

� �
steps of A, that is, the cr

6K

� �
-th vertex v in the leftmost branch in the

DPLL tree of the execution of A. By Proposition 1 the algorithm reads at most

r/2 bits of b. Denote by Iv � [m] the set of the revealed bits and by Rv the set of

the assigned variables, Rvj j ¼ cr
6K

� �
. The idea of the proof is that A cannot guess

64 MICHAEL ALEKHNOVICH ET AL.



the true values of xRv
by observing only r bits of b. Denote by rv the partial

assignment to the variables in Rv made by A. Consider the event

E ¼ A�1b
� �

Rv ¼ �v
 �

(recall that our probability space is defined by the 2m possible values of b). This
event holds if and only if the formula F(b)ªrv is satisfiable. For I � m½ �;R �
n½ �; !� 2 0; 1f gI; � 2 0; 1f gR we want to estimate the conditional probability

Pr EjIv ¼ I; Rv ¼ R; bIv ¼ !�; �v ¼ �
� �

: ð5Þ
If we show that this conditional probability is small (irrespective of the choice

of I; R; !�; and �), it will follow that the probability of E is small.

We use the following lemma (and delay its proof for a moment).

LEMMA 11. Assume that an m � n matrix A is an (r, 3, c0)-expander, X =
{x1, . . . , xn} is a set of variables, X̂X � X; j X̂Xj < r; b 2 0; 1f gm, and L ¼
‘1; . . . ‘kf g (where k < r) is a tuple of linear equations from the system Ax = b.
Denote by L the set of assignments to the variables in bXX that can be extended to X
to satisfy L. If L is not empty, then it is an affine subspace of 0; 1f gX̂X of dimension
greater than j X̂Xj ¼ �1

2
� 14�7c0

2 2c0�3ð Þ
�
.

Choose L ¼ Aix ¼ �if gi�I; X ¼ Vars Lð Þ; X̂X ¼ R; j X̂Xj ¼ cr= 6Kð Þb c. Recall

that c0 = 25/13. Then Lemma 11 says that dim L > 2
11
Rj j, where L is the set of

locally consistent assignments to the variables in R. Let�
b̂b
�
i
¼

�i; i 2 I;

bi; otherwise

:
(

Note that b̂b has the distribution of b when we fix Iv = I and bI ¼ !�. The vector
b̂b is independent from the event E1 ¼ Iv ¼½ I ^ Rv ¼ R ^ bIv ¼ !� ^ �v ¼ ��. This
is because in order to determine whether E1 holds, it is sufficient to observe the

bits bI only. Clearly, A�1b̂b
� �

R
is distributed uniformly on L (note that A is a

bijection). Thus

Pr EjIv ¼ I; Rv ¼ R; bIv ¼ !�; �v ¼ �
� �

¼ Pr A�1b̂b
� �

R
¼ �jIv ¼ I;Rv ¼ R; bIv ¼ !�; �v ¼ �

� �
¼ Pr A�1b̂b

� �
R
¼ �� �

	 2�dim L < 2�
2
11

Rj j 	 2�
cr

1000 K :

If E does not happen, however, then by Lemma 10 it takes time 2W(r) for A to

refute the resulting unsatisfiable system (note that by Proposition 2 the as-

signment rv is locally consistent).

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 65



Proof of Lemma 11. First we repeatedly eliminate variables and equations

from L until we get rid of

Y equations containing boundary variables not from X̂X; and
Y equations containing more than one boundary variable.

We do so by repeating the following two procedures (in any order) as long as

at least one of them is applicable. Ì

PROCEDURE 1. If L contains an equation ‘ with boundary element j 2 @L
s:t: xj =2 X̂X, then remove ‘ from L:

Note that Procedure 1 does not change L and X̂X. Therefore, if the claim of our

lemma holds for the new system and new X̂X, it holds for the original one as well.

PROCEDURE 2. If L contains an equation ‘ with at least two boundary
elements j1, j2 s.t. xj1 ; xj2 2 X̂X, then remove ‘ from L and all these (two or three)
boundary elements from X̂X.

This procedure decreases X̂X


 

 by 2 (or by 3) and decreases dim L by 1 (resp.,

by 2). Therefore, if the claim of our lemma holds for the new system and new X̂X,
it holds for the original one as well.

Thus, it is enough to prove the claim of our lemma for the case where none of

the procedures above is applicable to L. Then @L is covered by X̂X; in particular,

k 2c0 � 3ð Þ 	 @Lj j 	 X̂X


 

;

which implies

k 	 X̂X


 



2c0 � 3
: ð6Þ

(Note that we have used Lemma 1 here.) Denote by L0 � L the subset of

equations that contain at least one variable from X̂X. Since none of them contains

two boundary variables and there are at least k(2c0j3) such boundary variables,

L0j j � k 2c0 � 3ð Þ:
Let �LL ¼ LnL0. We have

�LL

 

 	 k 1� 2c0 � 3ð Þð Þ ¼ k 4� 2c0ð Þ:

Finally, since A is an (r, 3, c0)-expander, Vars Lð Þj j � c0k. On the other hand,

Vars �LL� �

 

 	 3 �LL

 

 	 k 12� 6c0ð Þ. Thus, the number of variables in L0 is at least
k(c

0
j(12j6c0)) = k(7c0j12).

We now apply Gaussian elimination to the set L0. Namely, we subsequently

consider variables y 2 Vars
�L0�nX̂X and make substitutions y = . . . with the

66 MICHAEL ALEKHNOVICH ET AL.



corresponding linear forms. Clearly, during this process every equation in (the

modified) L0 still contains at most two variables not from X̂X. Also, each substi-

tution decreases the number of variables in Vars
�L0�nX̂X at most by two. Thus the

Gaussian elimination has to make at least
�
k 7c0 � 12ð Þ � 

X̂XjÞ�2 substitutions

before all variables in Vars
�L0�nX̂X are eliminated.

After this, the values of variables in X̂X are determined by the remaining

system that contains at most

k � k 7c0 � 12ð Þ � X̂X


 



2
¼ 14k � 7kc0 þ X̂X



 


2

linear equations (containing only variables in X̂X); hence, the dimension of L is

lower bounded by

X̂X


 

� 14k � 7kc0 þ X̂X



 


2

� X̂X


 

 1

2
� 14� 7c0

2 2c0 � 3ð Þ
� �

(here we used (6)).

4. An Exponential Lower Bound for Drunk Algorithms

In this section, we prove an exponential lower bound on the running time of

drunk algorithms (described in Section 2.1) on satisfiable formulas. The proof

strategy is as follows. We take a known hard unsatisfiable formula G and

construct a new satisfiable formula that turns into G if the algorithm chooses a

wrong value for some variable. Since for several tries the algorithms errs at least

once with high probability, the recursive procedure is likely to be called on G
and hence will take an exponential time.

In what follows, we give the construction of our hard satisfiable formulas

(citing the construction of hard unsatisfiable formulas), then prove two (almost

trivial) formal statements for the behavior of DPLL algorithms on hard un-

satisfiable formulas, and finally prove the main result of this section.

Since the size of recursion tree for an unsatisfiable formula does not depend

on the random choices of a drunk algorithm, we can assume that our algorithm

has the smallest possible recursion tree for every unsatisfiable formula. We call

such an algorithm an Foptimal_ drunk algorithm.

4.1. HARD SATISFIABLE FORMULAS BASED ON HARD UNSATISFIABLE FORMULAS

Our formulas are constructed from known hard unsatisfiable formulas. For ex-

ample, we can take hard unsatisfiable formulas from [14].

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 67



THEOREM 3 ([14], Theorem 1). For each k Q 3 there exist a positive constant
ck = O(kj1/8), a function f xð Þ ¼ W 2x 1�ckð Þ� �

, and a sequence of unsatisfiable
formulas Gn in k - CNF (for each l, Gl uses exactly l variables) such that all
treelike resolution proofs of Gn have size at least f(n).

COROLLARY 2. The recursion tree of the execution of a drunk DPLL
algorithm on the formula Gn from Theorem 3 (irrespective of the random
choices made by the algorithm) has at least f(n) nodes.

Proof. It is well known that treelike resolution proofs and DPLL trees are

equivalent. Note that the subsumption rule cannot reduce the size of a DPLL

tree. Ì

Remark 3. We do not use other facts about these formulas; therefore, our

construction works for any sequence of formulas satisfying a similar statement.

DEFINITION 6. Let us fix n. We call an unsatisfiable formula F (we do not

assume that F contains n variables) hard if the recursion tree of the execution of

(every) Foptimal_ drunk algorithm on F has at least f0(n) = ( f(n) j 1)/2 nodes,

where f is the function appearing in Theorem 3.

DEFINITION 7. We consider formulas of the formj Hn = G(1) ^ G(2) ^ . . .^
G(n), where G(i) is the formula in CNF of n variablesjj x1

(i), . . . , xn
(i) (for all i m j,

the sets of variables of the formulas G(i) and G( j) are disjoint) defined as follows.

Take a copy of the hard formula from Theorem 3; call its variables xj
(i) and the

formula eG ið Þ. Then change the signs of some literals in eGG ið Þ (this is done by

replacing all occurrences of a positive literal l with Kl and, simultaneously, of the

negative literal Kl with l) so that the recursion tree of the execution of (every)

Foptimal_ drunk algorithm on eGG ið Þ�x ið Þ
j

�
is not smaller than that on eGG ið Þ�x ið Þ

j

�
(hence,eGG ið Þ½Kx ið Þ

j � is hard). Use the (modified) formula eGG ið Þ to construct the formula.� eGG ið Þ _ x
ið Þ
1 Þ ^

� eGG ið Þ _ x
ið Þ
2 Þ ^ . . . ^ � eGG ið Þ _ x ið Þ

n Þ and simplify it using the simplification

rules; the obtained formula is G(i).

Remark 4. We change signs of literals only to simplify the proof of our result;

one can think that the algorithm is actually given the input formula without the

change.

Remark 5. Clearly, Hn has size polynomial in n (and hence in the number of

variables).

j Note that the subscript in Hn does not denote the number of variables.
jj

It is possible that some of these variables do not appear in the formula; therefore,
formally, a formula is a pair: a formula and the number of its variables.

. We use G ¦ x to denote a formula in CNF: x is added to each clause of G, and the
clauses containingKx are deleted.

68 MICHAEL ALEKHNOVICH ET AL.



4.2. BEHAVIOR OF DRUNK ALGORITHMS ON UNSATISFIABLE FORMULAS

LEMMA 12. Let G be a hard formula. Let F be a formula having exactly one
satisfying assigment. Let the sets of variables of F and G be disjoint. Then the
formula F ^ G is hard.

Proof. The statement is easy to see (note that hardness does not depend on

the number of variables in the formula): a recursion tree for the formula F $ G
corresponds to a recursion tree for the formula G. Ì

LEMMA 13. The formula G(i)[Kxj
(i)] is hard.

Proof. For each formula F by Simplify(F) we denote the result of applying

the simplification rules to F (the rules are applied as long as at least one of them

is applicable). One can easily see that this formula is uniquely defined (note that

our simplification rules commute with each other). By our definition of a DPLL

algorithm, F is hard if and only if Simplify(F) is hard. Note that

Simplify (G(i)[Kxj
(i)
]) =

Simplify
�� eGG ið Þ�K x ið Þ

j

� _ x ið Þ
1 Þ ^ . . . ^ � eGG ið Þ�x ið Þ

j �Þ ^ . . . ^ � eGG ið Þ�K x ið Þ
j � _ x ið Þ

n ÞÞ ¼
Simplify

� eGG ið Þ�K x ið Þ
j

�Þ.
(The last equality is obtained by applying the subsumption rule.) The formula

Simplify
� eG ið Þ �

K x
ið Þ
j

�Þ is hard because
� eGG ið Þ�K x ið Þ

j

�Þ is hard. Ì

4.3. BEHAVIOR OF DRUNK ALGORITHMS ON SATISFIABLE FORMULAS

THEOREM 4. The size of the recursion tree of the execution of a drunk DPLL
algorithm on input Hn is less than f 0(n) with probability at most 2jn.

Proof. The unique satisfying assignment to Hn is xj
(i) = 1. Note that Hn[Kxj

(i)]

contains an unsatisfiable subformula G(i)[Kxj
(i)]. Ì

Consider the splitting tree of our algorithm on input Hn. It has exactly one leaf

corresponding to the satisfying assignment. We call node w on the path

corresponding to the satisfying assignment critical if Heuristic A chooses a

variable xm
(i) for this node and this is the first time a variable from the subformula

G(i) is chosen along this path. A critical subtree is the subtree corresponding to

the unsatisfiable formula resulting from substituting a Fwrong_ value in a critical

node.

By Lemmas 12 and 13 the size of a critical subtree is at least f 0(n) (note that

the definition of a critical node implies that the corresponding subformula G(i) is

untouched in it and hence its child contains a hard subformula G(i)[Kxj
(i)]; it is

clear that the simplification rules could not touch G(i) before the first assignment

to its variables).

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 69



The probability of choosing the value xj
(i) = 0 equals 1

2
. There are n critical

nodes on the path leading to the satisfying assignment; therefore the probability

that the algorithm does not go into any critical subtree equals 2jn. Note that if it

ever goes into a critical subtree, it has to examine all its nodes, and there are at

least f
0
(n) of them.

COROLLARY 3. For each k Q 3 there exist a positive constant ck = O(kj1/8), a
function g xð Þ ¼ W 2x 1�ckð Þ� �

, and a sequence of unsatisfiable formulas Hn in (k +

1)jCNF (Hn uses m variables, where n e m e n2) such that the size of recursion
tree of the execution of any drunk DPLL algorithm on input Hn is less than g(n)
with probability at most 2jn.

5. Recent Developments and Remaining Open Questions

Since the publication of the preliminary version of this paper, our results were

developed and generalized in [6] (see the section on Satisfiability). First, [6]

constructed a sequence of full rank matrices that are (�n, 3, d)-expanders for

some constant �, d. With our Theorem 2 this implies that no generalized myopic

DPLL algorithm may find a solution for a satisfiable formula in 3-CNF in time

2W(n) in the worst case (as opposed to our 2n=log
O 1ð Þn bound).

Unfortunately, this newer bound as well as the bound of Pudlák and

Impagliazzo [14] for unsatisfiable formulas is still far from upper bounds for 3-

SAT (the currently best one is O(1.324n) [12]). However, Pudlák and

Impagliazzo prove that for unsatisfiable k-CNF formulas the lower bound

converges to W(2n) as k goes to the infinity. Does the corresponding result hold

for satisfiable formulas, for example, if we replace (r, 3, d)-expanders by (r, k,
d)-expanders?

Second, [6] generalized our DPLL lower bounds for a wide class of algo-

rithms called BT (which stands for Fbacktracking_). The latter model for solving

satisfiability combines the greedy methods with backtracking, it is similar to

DPLL-style algorithms, although formally, two models are incomparable.

The Fdifficult_ formulas used in our proof in Section 3 encode a linear system

over GF2 and thus are solvable in polynomial time by Gaussian elimination

procedure. Therefore, it may be interesting to prove an exponential lower-bound

analogous result for some difficult formulas, for example, random formulas

generated near the 3-SAT phase transition or w.r.t. even more complicated

distributions (like hgen2; see [15]) that are empirically hard for contemporary

SAT solvers.

Various generalizations of the notions of myopic and drunk algorithms

would guide natural extensions of our results. Note, however, that merging the

notions is not easy: if Heuristic A is not restricted, it can feed information to

Heuristic B even if it is not enabled directly (for example, it can choose var-

iables that are to be assigned one while they persist). Therefore, Heuristic B

70 MICHAEL ALEKHNOVICH ET AL.



must have oracle access that would hide syntactical properties of the formula

so that Heuristic B would not gain any other information from Heuristic A

except for Bbranching on the variable v is nice.^ For example, the oracle must

randomly rename variables, (consistently) negate some of them, and change the

order of clauses. It is also interesting to consider models that would cover

heuristics that apply to recursion tree as a whole rather than to one branch (for

example, learning).

Acknowledgement

We are grateful to Eli Ben-Sasson for helpful discussions and to anonymous

referees for numerous comments that improved the quality of this paper.

References

1. Achlioptas, D., Beame, P. and Molloy, M.: A sharp threshold in proof complexity, J. Comput.
Syst. Sci. (2003).

2. Achlioptas, D., Beame, P. and Molloy, M.: Exponential bounds for DPLL below the

satisfiability threshold, in Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’04, 2004, pp. 139Y140.

3. Achlioptas, D. and Sorkin, G. B.: Optimal myopic algorithms for random 3-SAT, in

Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science,
FOCS’00, 2000.

4. Alekhnovich, M. and Ben-Sasson, E.: Analysis of the random walk algorithm on random

3-CNFs, Manuscript, 2002.

5. Alekhnovich, M., Ben-Sasson, E., Razborov, A. and Wigderson, A.: Pseudorandom

generators in propositional complexity, in Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, FOCS’00, Journal version is to appear in SIAM Journal
on Computing, 2000.

6. Alekhnovich, M., Borodin, A., Buresh-Oppenheim, J., Impagliazzo, R., Magen, A. and

Pitassi, T.: Toward a model for backtracking and dynamic programming, in Proceedings of
the 20th Annual Conference on Computational Complexity, 2005, pp. 308Y322.

7. Alekhnovich, M. and Razborov, A.: Lower bounds for the polynomial calculus: Non-

binomial case, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science, 2001.

8. Ben-Sasson, E. and Wigderson, A.: Short proofs are narrow Y resolution made simple, J.
ACM 48(2) (2001), 149Y169.

9. Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem-proving,

Commun. ACM 5 (1962), 394Y397.
10. Davis, M. and Putnam, H.: A computing procedure for quantification theory, J. ACM 7

(1960), 201Y215.
11. Hirsch, E. A.: SAT local search algorithms: Worst-case study, J. Autom. Reason. 24(1/2)

(2000), 127Y143. Also reprinted in BHighlights of Satisfiability Research in the Year 2000^,
Volume 63 in Frontiers in Artificial Intelligence and Applications, IOS.

12. Iwama, K. and Tamaki, S.: Improved upper bounds for 3-SAT, in Proceedings of
the Fifteenth Annual ACMYSIAM Symposium on Discrete Algorithms, SODA’04, 2004,

pp. 328Y328.

EXPONENTIAL LOWER BOUNDS FOR THE RUNNING TIME OF DPLL ALGORITHMS 71



13. Nikolenko, S. I.: Hard satisfiable formulas for DPLL-type algorithms, Zap. Nauc. Semin.
POMI 293 (2002), 139Y148. English translation is to appear in Journal of Mathematical

Sciences: Consultants Bureau, N.Y., March 2005, Vol. 126, No. 3, pp. 1205Y1209.
14. Pudlák, P. and Impagliazzo, R.: A lower bound for DLL algorithms for k-SAT, in

Proceedings of the 11th Annual ACMYSIAM Symposium on Discrete Algorithms, SODA’00,
2000.

15. Simon, L., Le Berre, D. and Hirsch, E. A.: The SAT 2002 Competition, Ann. Math. Artif.
Intell. 43 (2005), 307Y342.

16. Tseitin, G. S.: On the complexity of derivation in the propositional calculus, Zap. Nauc.
Semin. LOMI 8 (1968), 234Y259. English translation of this volume: Consultants Bureau,

N.Y., 1970, pp. 115Y125.

72 MICHAEL ALEKHNOVICH ET AL.



Backdoor Sets for DLL Subsolvers

STEFAN SZEIDER
Department of Computer Science, Durham University, DH1 3LE, Durham, England, UK.
e-mail: stefan.szeider@durham.ac.uk

Abstract. We study the parameterized complexity of detecting small backdoor sets for instances of
the propositional satisfiability problem (SAT). The notion of backdoor sets has been recently

introduced by Williams, Gomes, and Selman for explaining the Fheavy-tailed_ behavior of back-
tracking algorithms. If a small backdoor set is found, then the instance can be solved efficiently by

the propagation and simplification mechanisms of a SAT solver. Empirical studies indicate that

structured SAT instances coming from practical applications have small backdoor sets. We study

the worst-case complexity of detecting backdoor sets with respect to the simplification and

propagation mechanisms of the classic DavisYLogemannYLoveland (DLL) procedure. We show

that the detection of backdoor sets of size bounded by a fixed integer k is of high parameterized

complexity. In particular, we determine that this detection problem (and some of its variants) is

complete for the parameterized complexity class W[P]. We achieve this result by means of a

generalization of a reduction due to Abrahamson, Downey, and Fellows.

Key words: satisfiability, unit propagation, pure literal elimination, backdoor sets, parameterized

complexity, W[P]-completeness.

1. Introduction

The propositional satisfiability problem (SAT) is the first problem shown to be NP-

complete. It holds a central role in the theory of computational complexity and is of

practical relevance for applied areas such as verification or planning. SAT in-

stances with n variables can be solved by brute force, checking all 2n truth

assignments; no algorithm is known that runs in time 2o(n) in the worst case.

However, SAT instances arising from applications often impose a Fhidden struc-

ture_ that allows significantly faster SAT decision than by brute force search.

One example of such a hidden structure is based on the concept of

backdoor sets of variables, recently introduced by Williams, Gomes, and Selman

[11, 12]. A weak backdoor set of a SAT instance is a set B of variables such that

for at least one truth assignment to the variables in B, simplifying the instance

according to that assignment yields a satisfiable instance that can be decided in

polynomial time by a Fsubsolver._ A subsolver is an incomplete polynomial-time

algorithm that uses the propagation and simplification mechanisms of a SAT-

Journal of Automated Reasoning (2005) 35: 73Y88
DOI: 10.1007/s10817-005-9007-9

# Springer 2006



solver. A strong backdoor set of a SAT instance is a set B of variables such that

for every truth assignment to the variables in B, the resulting simplified SAT

instance can be decided by the subsolver (exact definitions are given in Sections

3 and 4 below). As reported by Williams, Gomes, and Selman [12], highly

structured problem instances have small weak backdoor sets; for example, for a

logistics planning benchmark instance with about 7,000 variables, a weak

backdoor set of size 12 could be found. However, the minimum size of backdoor

sets of nonstructured instances, such as random 3-SAT, appears to be a constant

fraction (about 30%) of the total number of variables (Interian [7]). The

dependency among the variables of minimal weak backdoor set is studied by

Ruan, Kautz, and Horvitz [10]. It is observed that SAT-solvers may heuristically

be quite capable of exploiting the existence of small weak backdoor sets in

practice, without necessarily identifying the backdoor sets explicitly [10, 12].

In the sequel we address the worst-case time complexity of deciding whether a

given SAT instance has a weak or strong backdoor set of size bounded by some

integer k. We study this problem with respect to subsolvers of the standard

DavisYLogemannYLoveland (DLL) algorithm, that is, subsolvers that are based on

unit propagation and pure literal elimination, or on one of these two principles.

We can detect a weak/strong backdoor set of size at most k by considering all

sets B of k or fewer variables of the given instance and by checking whether one

or all of the 2ªBª assignments to the variables in B yield an instance that can be

decided by the subsolver under consideration. Thus a backdoor set can be

detected in timeO 2knkþ�
� �

; where O n�ð Þ is the worst-case time complexity of the

subsolver. However, such a trivial approach becomes impractical for large n even

if the parameter k, the maximum size of a backdoor set, is chosen small. In this

paper we tackle the question of whether, in general, a small backdoor set can be

found significantly faster than by brute force search.

The framework of parameterized complexity (Downey and Fellows [5])

provides an excellent framework for studying this question. A parameterized

problem is a set L � S* � S* for some fixed alphabet S. For a problem instance

(x, k) 2 L, we refer to x as the main part, and to k as the parameter. Typically

(and for all problems considered in the sequel), the parameter is a positive

integer (presented in unary). XP denotes the class of parameterized problems

that can be solved in polynomial time whenever the parameter is considered as

a constant; the above considerations show that the detection of a backdoor set is

in XP. If a parameterized problem L can be solved in time O( f(k)nc), where f is
any computable function of the parameter and c is a constant (independent from

k), then L is called fixed-parameter tractable; FPT denotes the class of all fixed-

parameter tractable problems. Parameterized complexity classes are defined as

equivalence classes of parameterized problems under a certain parameterized

reduction. This parameterized reduction is an extension of the polynomial-time

manyYone reduction where a parameter for one problem maps into a parameter

for another. More specifically, a parameterized problem L reduces to a para-

74 STEFAN SZEIDER



meterized problem L0 if we can transform an instance (x, k) of L into an instance

(x0, g(k)) of L0 in time f(k) I ªxªO(1) ( f, g are arbitrary computable functions),

such that (x, k) is a yes-instance of L if and only if (x0, g(k)) is a yes-instance of

L0. The class XP contains a hierarchy of parameterized complexity classes

FPT �W 1½ � �W 2½ � � . . . �W½P� � XP:

All inclusions are assumed to be proper; FPT m XP is known [5]. The higher a

problem is located in this hierarchy, the more unlikely it is fixed-parameter

tractable. The canonical W[P]-complete problem is the following (cf. [5]).

WEIGHTED CIRCUIT SATISFIABILITY

Input: A decision circuit D.
Parameter: A positive integer k.
Question: Does D accept an input assignment of weight k?

If a W[P]-complete problem turns out to be fixed-parameter tractable, then the

n-variable SAT problem can be solved in time 2o(n) (Abrahamson, Downey, and

Fellows [1]); a recent treatment of the relationship between parameterized

complexity classes and SAT upper bounds can be found in Flum and Grohe [6].

The parameterized problem WEIGHTED MONOTONE CIRCUIT SATISFIABILITY arises from

WEIGHTED CIRCUIT SATISFIABILITY by restricting the instances to monotone circuits.

Surprisingly, WEIGHTED MONOTONE CIRCUIT SATISFIABILITY remains W[P]-hard [1, 5].

Furthermore, the problems remain W[P]-complete if we ask for an accepted input

assignment of weight at most k (see Section 2).

In this paper we completely classify the parameterized complexity of the

problem of whether a SAT instance has a weak or strong backdoor set of size not

exceeding a parameter k w.r.t. subsolvers that arise from the DLL procedure. In

particular, we determine that detection of weak and strong backdoor sets is

W[P]-complete for the considered subsolvers. Thus we provide strong theoretical

evidence that these problems are not fixed-parameter tractable. We generalize the

proof technique used by Abrahamson, Downey, and Fellows [1] for k-INDUCED
SATISFIABILITY and other problems by introducing a certain parameterized problem

on cyclic monotone circuits (see, e.g., Malik [8]). We show that this new

problem, CYCLIC MONOTONE CIRCUIT ACTIVATION, is W[P]-complete. Parameterized

reductions of this problem provide the base for our W[P]-hardness results. We

think that CYCLIC MONOTONE CIRCUIT ACTIVATION is interesting on its own as its W[P]-

hardness proof is conceptually simple, and it provides a means for several other

W[P]-hardness proofs.

2. Notation and Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x
with an assigned parity " 2 {0, 1} and is denoted by x ". We also write x = x1 and

BACKDOOR SETS FOR DLL SUBSOLVERS 75



x ¼ x0. A set S of literals is tautological if it contains both x and x for some

variable x. A clause is a finite nontautological set of literals. We consider a finite

set of clauses as a CNF formula (or formula, for short). Clauses of size one are

called unit clauses. The set of variables occurring (negated or unnegated) in a

formula F is denoted by var(F). A literal x " is a pure literal of a formula F if

x 2 var(F) and no clause of F contains x1�".
A truth assignment (or assignment, for short) is a map � : X� ! 0; 1f g defined

on some set X� of variables. If X� is a singleton {x} with �(x) = ", then we denote
� simply by x = ". An assignment � is total for a formula F if X� ¼ var Fð Þ. For
x 2 X� we define � xð Þ ¼ 1� � xð Þ. For an assignment � and a formula F, F[�]
denotes the formula obtained from F by removing all clauses that contain a

literal x with �(x) = 1 and removing literals y with �(y) = 0 from the remaining

clauses. An assignment � satisfies a formula F if F[�] = ;. A formula is satisfiable
if it is satisfied by some assignment; otherwise it is unsatisfiable. Let F be a

formula and (x, ") 2 var(F) � {0, 1}. If F contains the unit clause x"f g (or x" is a
pure literal of F), then we say that the assignment x = " can be inferred (in one

step) by unit propagation (or pure literal elimination, respectively). If both x = 0

and x = 1 can be inferred, then F is unsatisfiable (F contains both {x} and xf g).
A decision circuit (or circuit, for short) D is a triple (G, E, l), where (G, E) is

an acyclic digraph (the underlying digraph of D) and l is a mapping from G to

{AND, OR, NOT}. The elements of G are the gates and the elements of E are the lines
of D. A gate g 2 G is called l(g)-gate. D is monotone if it contains no NOT-gates.

The fanin (fanout) of a gate g 2 G is its in-degree (out-degree) in the underlying

digraph. We assume that NOT-gates have fanin 1 and that AND/OR-gates have fanin at

least one. Gates with fanin 2 are binary gates. If E contains the line (g, h), then we
say that g is a predecessor of h and that h is a successor of g. Gates with fanin 0

are the input gates of the circuit and gates with fanout 0 are the output gates of the
circuit. We assume that every circuit has exactly one output gate. If the underlying

digraph of a circuit D is a tree, then D can be identified with a Boolean formula.

An input assignment � for a circuit D is a mapping from the set of input gates

of D to {0, 1}. An input assignment � propagates through the circuit in the

natural way; for example, for an AND-gate g with predecessors g1,. . . , gn, we have
�(g) = mini = 1

n �(gi). A circuit D accepts an input assignment � if �(u) = 1 holds

for the output gate u of D. The weight of an input assignment is the number of

input gates that are assigned to 1.

Note that a monotone circuit with n input gates accepts an input assignment of

weight at most k for some k e n if and only if it accepts an input assignment of

weight exactly k. If D is nonmonotone, then we can still obtain in polynomial time

a circuit D0 with nk input gates such that D accepts an input assignment of weight at

most k if and only if D0 accepts an input assignment of weight exactly k (D0 can be

obtained from D by adding an OR-gate of fanin k in front of each input gate).

Furthermore, by means of a standard construction, we can transform a circuit D
into a circuit D2 (D2 has the same input gates as D) by replacing gates of fanin

76 STEFAN SZEIDER



greater than 2 by several binary gates. The construction of D2 from D can be

carried out in polynomial time, and both circuits accept the same input assignments.

3. Subsolvers

The DavisYPutnam (DP) procedure [4] and the related DavisYLogemannY
Loveland (DLL) procedure [3] are certainly the best known complete algorithms

for solving the satisfiability problem. Complete state-of-the-art SAT-solvers are

typically based on variants of the DLL procedure. A concise description of these

procedures can be found in Cook and Mitchell [2]. Both procedures, DP and

DLL, search for a satisfying assignment, applying first unit propagation and pure
literal elimination as often as possible. Then, DLL makes a case distinction on

the truth value of a variable, and DP eliminates a variable x by replacing the

clauses in which x occurs by all the clauses that can be obtained by resolving on

x. The DLL procedure is sketched in Figure 1.

If we use only unit propagation and pure literal elimination, then we get an

incomplete algorithm that decides satisfiability for a subclass of CNF formulas.

(Whenever the algorithm reaches the branching step, it halts and outputs Fgive up._)
This incomplete algorithm is an example of a Fsubsolver_ as considered by

Williams et al. [11]; a polynomial-time algorithm S is called a subsolver if it

either correctly decides satisfiability of the given formula F or it gives up. More-

over, it is required that if the subsolver S decides that F is satisfiable, it also returns

Figure 1. The DavisYLogemannYLoveland (DLL) procedure.

BACKDOOR SETS FOR DLL SUBSOLVERS 77



a satisfying assignment and that S satisfies the following basic conditions: first,

that it decides the empty formula as being satisfiable and a formula containing the

empty clause as being unsatisfiable, and second, that if it decides the satisfiability

of a formula F, then it does so for F[x = "] for any (x, ") 2 var(F) � {0, 1}.

The DLL procedure gives rise to three nontrivial subsolvers: UP + PL (unit

propagation and pure literal elimination are available), and UP (only unit propa-

gation is available), PL (only pure literal elimination is available).

4. Backdoor Sets

The power of a subsolver can be enhanced by taking an assignment � to a few

variables of the given formula F and inputting F[�] to the subsolver. This idea

leads to the concept of backdoor sets (cf. [11, 12]).

A set B of variables is a weak backdoor set of a formula F w.r.t. a subsolver S
if B � var(F) and there exists an assignment � : B Y {0, 1} such that S returns

a satisfying assignment for the input F[�]; we also say that B is a weak S-
backdoor set. The set B is a strong backdoor set of F w.r.t. S if B � var(F) and
for every assignment � : B Y {0, 1}, the subsolver S decides whether F[�] is
satisfiable; we also say that B is a strong S-backdoor set.

Similarly one can define backdoor sets with respect to a class C of formulas

where membership in C and satisfiability of formulas in C can be decided in

polynomial time.

Note that by definition, unsatisfiable formulas do not have weak backdoor

sets and that B = var(F) is always a weak backdoor set of any satisfiable formula

F. Moreover, if F is satisfiable, then every strong backdoor set of F is also a

weak backdoor set of F w.r.t. any subsolver S, but the converse does not hold in

general.

For a subsolver S we consider the following two parameterized problems.

WEAK S-BACKDOOR
Input: A formula F.
Parameter: A positive integer k.
Question: Does F have a weak S-backdoor set B of size at most k?

STRONG S-BACKDOOR
Input: A formula F.
Parameter: A positive integer k.
Question: Does F have a strong S-backdoor set B of size at most k?

In the next section we formulate an intermediate problem on cyclic monotone

circuits that will allow us to determine the complexity of backdoor set detec-

tion for the nontrivial subsolvers UP + PL, UP, and PL.

78 STEFAN SZEIDER



5. Cyclic Monotone Circuits

A cyclic monotone circuit is a monotone circuit whose underlying digraph may

contain directed cycles. Cyclic circuits have been considered by several authors;

see, for example, Malik [8] for references. We assume that a cyclic monotone

circuit may have no input or output gates.

Consider a set A of gates of a cyclic monotone circuit D (we think of the gates

in A to be activated). The successor set s(A) of A contains all gates g of D for

which at least one of the following holds:

Y g 2 A;
Y g is an AND-gate and all predecessors of g are in A;
Y g is an OR-gate and at least one predecessor of g is in A.

If we take iteratively successor sets of A (i.e., we compute a sequence of sets

A0 � A1 � A2 � . . . with A0 = A and Ai+1 = s(Ai)), then we end up with a set A*
such that s(A*) = A*. We call A* the closure of the starting set A. Since Ai �
s(Ai) holds always by monotonicity, the closure of A for a cyclic monotone

circuit D with n gates is obtained after at most n iterations. We say that A
activates D if the closure A* contains all gates of D.

Consider, for example, the cyclic monotone circuit exhibited in Figure 2. The

set {g1} activates the circuit, since we have s(s({g1})) = s({g1, g2}) = {g1, g2, g3}.
However, the set {g2} does not activate the circuit, since s({g2}) = {g2} = {g2}* m
{g1, g2, g3}.

We are interested in finding a small set of gates that activates a given cyclic

monotone circuit. To this end, we define the following parameterized problem.

CYCLIC MONOTONE CIRCUIT ACTIVATION

Instance: A cyclic monotone circuit D.
Parameter: A positive integer k.
Question: Does some starting set A containing at most k gates activate D?

LEMMA 1R CYCLIC MONOTONE CIRCUIT ACTIVATION is W[P]-complete. The problem
remains W[P]-complete for instances without input or output gates.

Figure 2. A cyclic monotone circuit.

BACKDOOR SETS FOR DLL SUBSOLVERS 79



ProofR We show membership in W[P] by reducing the problem to WEIGHTED

CIRCUIT SATISFIABILITY. Given a cyclic monotone circuit D with n gates, we construct

an acyclic monotone circuit C as follows. For every )-gate g of D, ) 2 {AND, OR},

with predecessors g1, . . . , gr and 0 e t e n, we add a gate g[t] to C as follows.

For t = 0, the gate g[0] is an input gate of C, and for t > 0, we put

g t½ � ¼ g t� 1½ � _ r
i¼1gi t� 1½ �� �

:

Finally, we add the output gate

u ¼
^
g 2 D

g n½ �:

It is straightforward to verify that C accepts a weight k input assignment if and

only if some starting set of size k activates D. Hence CYCLIC MONOTONE CIRCUIT

ACTIVATION is in W[P].

To show W[P]-hardness, we reduce from WEIGHTED MONOTONE CIRCUIT SATISFI-

ABILITY, using ideas from Abrahamson, Downey, and Fellows [1]. Let C be a

monotone circuit with n input gates x1, . . . , xn and the output gate u. We construct

a cyclic monotone circuit D as follows. We take k + 1 copies of C, say C[1], . . . ,
C[k + 1], and denote the copy of a gate g in C[j] by g[j]. We add n identical AND-

gates h1, . . . , hn, each defined by

hi ¼
k̂þ 1

j¼ 1

u j½ �:

We Ffeed back_ the gates hi to the input gates of the circuits C[1], . . . , C[k + 1],

adding all the lines (hi, xi[ j ]) for j = 1,. . . , k + 1 and i = 1,. . . , n. This concludes
the construction of D. Observe that D has no input or output gates.

We show that C accepts an input assignment of weight at most k if and only if

a starting set of size at most k activates D.
Assume that C accepts an input assignment � of weight k. We take A = {hi:

1 e i e n, �(xi) = 1} and put A0 = A and Ai = s(Aij1) for i > 0. Let d be the length

of a longest path in the underlying digraph of C from some input gate xi to the

output gate u (i.e., d is the Fdepth_ of C). Since C accepts �, it follows that after
d + 1 iterations all output gates u[j] are activated, that is, {u[1], . . . , u[k + 1]} �
Ad+ 1. Hence {h1, . . . , hn} � Ad + 2. In the next step all input gates of the circuits

C[i] are activated. After d more iterations, going through the circuits C[i] a

second time, finally all gates of D belong to A2d + 2 = A*. Hence A activates D.
Conversely, assume that a starting set A of size at most k activates D, but C

accepts no input assignment of weight at most k (we aim to get a contradiction).

Since ªAª e k, there must be at least one C[ j], j 2 {1,. . . , k + 1}, such that A
does not contain any gate of C[ j]. Since A activates D, u[ j] 2 A*. Let t be the

smallest integer such that u[ j] 2 At. Since no gate of C[ j] is in the starting set A,
some of the input gates of C[ j] are activated at some later step such that the

activation of the input gates propagates through C[ j] to u[ j]. In other words, we

have X0 � {x1[ j], . . . , xn[ j]} 2 As for some s < t such that C[ j] accepts the input

80 STEFAN SZEIDER



assignment � 0 of C[j] with � 0(xi[ j]) = 1 if and only if xi[ j] 2 As. By assumption,

ªX0ª > k follows. Consequently, ª{h1, . . . , hn} 7 Asª > k. This is only possible if
all u[i], 1 e i e n, are in Asj1. In particular, u[ j] 2 Asj1 and so t e s j 1, a

contradiction to s < t. Hence C accepts some input assignment of weight at most

k. This completes the proof of the lemma. Ì

It is easy to verify that some starting set of size k activates a cyclic monotone

circuit D if and only if some starting set of size k activates the corresponding

circuit D2 that contains only binary gates (see Section 2). Consequently, CYCLIC

MONOTONE CIRCUIT ACTIVATION remains W[P]-hard for cyclic monotone circuits that

contain only binary gates.

6. Backdoor Sets for Nontrivial Subsolvers;

LEMMA 2R WEAK S-BACKDOOR is in W[P] for any S 2 {UP + PL, UP, PL}.
ProofR We reduce WEAK UP + PL-BACKDOOR to WEIGHTED CIRCUIT SATISFIABILITY. Let F

be an instance of UP + PL-BACKDOOR with n variables. We construct an acyclic

circuit C with 2n input gates that accepts a weight k input assignment if and only

if F has a weak UP + PL-backdoor set of size k.
We describe C as consisting of n + 1 layers, L0, . . . , Ln. Each layer Lt has input

gates x0[t] and x1[t] for every x 2 var(F). We think of the values of x0[t] and x1[t]
under some assignment � as representing the value of the variable x under some

assignment � of F after t propagation steps. That is, �(x0[t]) = �(x1[t]) = 0 means

that �(x) is not defined at step t; � x" t½ �ð Þ ¼ 1 means that �(x) = " at step t. The
construction of C will guarantee that � x0 t½ �ð Þ ¼ � x1 t½ �ð Þ ¼ 1 cannot be the case

for any input assignment � accepted by C. The input gates of the first layer are

the input gates of the whole circuit C. A layer Lt, t < n, contains gates that are
connected to the input gates of the next layer Lt + 1. The last layer Ln defines the
output gate u of C. Next we describe the construction of C in detail.

For x 2 var(F), " 2 {0, 1}, and t 2 {0,. . . , nj1}, we put

x" tþ 1½ � ¼ x" t½ �_ ð1Þ

^
C2F with x1�"2C

_
y� 2C

y� t½ �
 ! !

_ ð2Þ

_
C2F with x" 2C

^
y� 2Cn x"f g

y1�� t½ �
0@ 1A0@ 1A: ð3Þ

The disjunctive term in (1) ensures that once an assignment to a variable is made

it is not changed at a later step. The circuits defined in (2) express pure literal

BACKDOOR SETS FOR DLL SUBSOLVERS 81



elimination: we set x" to 1 at step t + 1 if all clauses that contain the

complementary literal x1�" are satisfied at step t. The circuits defined in (3)

express unit propagation: we set x" to 1 at step t + 1 if there is some clause in F
containing x" and all other literals in the clause are set to 0 at step t. It remains to

ensure that two input gates x" t½ � and x1�" t½ �, representing complementary literals,

are never both set to 1, and that finally, at step n, all clauses of F are satisfied.

Hence we define the output gate u as

u ¼
^

x 2 var Fð Þ
0 	 t 	 n

: x" t½ � ^ x1�" t½ �� �0BBB@
1CCCA ^ ^

C2F

_
y� 2C

y� n½ �:

It is straightforward to verify that C accepts an input assignment of weight k if

and only if F has a weak UP + PL-backdoor set of size k. Hence WEAK UP + PL-

BACKDOOR is in W[P]. For the problems WEAK UP-BACKDOOR and WEAK PL-BACKDOOR we

proceed similarly, omitting the constructions (2) or (3), respectively. Ì

LEMMA 3R STRONG S-BACKDOOR is in W[P] for any S 2 {UP + PL, UP, PL}.

ProofR We reduce STRONG UP + PL-BACKDOOR TO WEIGHTED CIRCUIT SATISFIABILITY,

extending the construction of the proof of Lemma 2. Let F be an instance of

STRONG UP + PL-BACKDOOR with n variables. We construct a circuit D with 2kn input

gates that accepts a weight 2kk input assignment if and only if F has a strong UP +

PL-backdoor set of size k.
For i = 1,. . . , 2k we construct circuits Di as in the proof of Lemma 2; each Di

consists of n + 1 layers and has input gates x"i t½ � for " 2 {0, 1}, x 2 var(F), and
t 2 {0,. . . , n}. The layers of Di consist of gates as defined in (2) and (3). The

output gate ui of Di is defined by

ui ¼
^

x2var Fð Þ
: x" 0½ � ^ x1�" 0½ �� �0@ 1A ^

^
C2F

_
y� 2C

y� n½ � _
_
C2F

^
y� 2 C

y1�� 0½ � _
_

x 2 var Fð Þ
1 	 t 	 n

x" t½ �ð ^ x1�" t½ �Þ

0BBB@
1CCCA:

The difference to the construction in the proof of Lemma 2 is that we also allow

the detection of unsatisfiability. We use the fact that unsatisfiability of a formula

can be detected by unit propagation and pure literal elimination if and only if the

formula contains the empty clause, or both x = 0 and x = 1 can be inferred.

82 STEFAN SZEIDER



We combine the circuitsD1; . . . ;D2k and define the output gate u of D by setting

u ¼
2̂k

i¼ 1

ui^ ð4Þ

^
1	 i< j	 2k

_
x2 var Fð Þ

x0i ½0�0x0j ½0�
0@ 1A^

^
x 2 var Fð Þ

1 	 i < j 	 2k

x0i ½0� _ x1i ½0�
� � � x0j ½0� _ x1j ½0�

� �0BBB@
1CCCA ð6Þ

where p 0 q abbreviates (p $ Kq) ¦ (Kp $ q), and p K q abbreviates (p $ q) ¦
(Kp $ Kq). Part (4) ensures that all the circuits Di accept the input assignment.

Part (5) ensures that the input assignment to different copies Di, Dj, differ in at

least one position. Part (6) ensures that all circuits Di, 1 e i e 2k, receive input

assignments that correspond to the same set B of variables of F. We claim that F
has a strong UP + PL-backdoor set B of size k if and only if D accepts an input

assignment of weight k.
Assume that B � var(F) is a strong UP + PL-backdoor set of F with ªBª = k.

Let �1; . . . ; �2kf g be the set of all assignments � i : B Y {0, 1}. We define an input

assignment � of D by setting for all (x, ") 2 var(F) � {0, 1}

� x"i 0½ �
� � ¼ 1 if x 2 B and �i xð Þ ¼ ";

0 otherwise:

�
We observe that for each Di, � sets exactly k input gates to 1; hence the weight of

� is 2kk. Since B is a strong UP + PL-backdoor set, it follows by construction of D
that D accepts �.

Conversely, assume that D accepts an input assignment � of weight 2kk. For
i = 1,. . . , 2k let Bi = {x 2 var(F) : �(xi

0[0]) = 1 or �(xi
1[0]) = 1)}, and define an

assignment � i : Bi Y {0, 1} such that � i(x) = 1 if and only if �(xi
1[0]) = 1. Part (6)

of the definition of D implies Bi = Bj for all 1 e i < j e 2k, and part (5) implies

�1; . . . ; �2kf gj j ¼ 2k. Thus �1; . . . ; �2k are all possible assignments for the set

B ¼ B1 ¼ . . . ¼ B2k . Since D accepts �, it follows that for every i 2 {1,. . . , 2k},

the UP + PL-subsolver decides whether F[� i] is satisfiable. In summary, B is a

strong UP + PL-backdoor set of size k.
Hence we have shown that STRONG UP + PL-BACKDOOR is in W[P]. This holds as

well for STRONG UP-BACKDOOR and STRONG PL-BACKDOOR, as we can modify the above

construction by omitting (2) or (3), respectively, in the definitions of the circuits

Di. Ì

(5)

BACKDOOR SETS FOR DLL SUBSOLVERS 83



LEMMA 4R The problems WEAK UP + PL-BACKDOOR and WEAK UP-BACKDOOR are
W[P]-hard. The problems remain W[P]-hard for CNF formulas that have exactly
one satisfying total assignment.

ProofR We reduce CYCLIC MONOTONE CIRCUIT ACTIVATION. Let D = (G, E, l) be a

cyclic monotone circuit without input or output gates. We may assume that all

gates of D are binary (see the discussion at the end of Section 5).

For each gate g 2 G we define a set of clauses Fg, and we obtain a formula F
by taking the union of all sets Fg with g 2 G. For an AND-gate g = x1 $ x2, the set
Fg contains the clauses

x1; y1f g; x1; y1f g; x1; y1f g;
x2; y2f g; x2; y2f g; x2; y2f g;
x1; y1; x2; y2; gf g;

the variables y1, y2 are new variables not occurring outside of these seven clauses

(we call the variables y1, y2 private). Similarly, for an OR-gate g = x1 ¦ x2, the set
Fg contains the clauses

x1; y1f g; x1; y1f g; x1; y1f g;
x2; y2f g; x2; y2f g; x2; y2f g;
x1; y1; zf g; x2; y2; gf g;

again, y1, y2 are private variables. By construction, G � var(F), and since D has

no input gates, var(F)\G is the set of all private variables of F. Evidently, each Fg

is satisfied by assigning 1 to all its variables; however, if 0 is assigned to at least

one variable, at least one clause of Fg is not satisfied. Hence the assignment �1
that sets all variables to 1 is the only satisfying total assignment of F. Conse-
quently, for any subsolver S, a set B � var(F) is a weak S-backdoor set of F if

and only if S extends the assignment �0 : BY{1} to the satisfying assignment �1.
From yi = 1 for a private variable yi we can infer xi = 1 by means of unit

propagation, since the clause xi; yif g is contained in F. Consequently, if B is a

weak UP-backdoor set of F, then replacing private variables yi of B with xi, yields
aweakUP-backdoor set B 0 � G with ªB 0ª e ªBª. Moreover, unit propagation on

a set Fg behaves exactly as the activation process on the gate g in D. For

example, consider Fg for an AND-gate g = x1 $ x2. By unit propagation, we infer

from x1 = 1 and x2 = 1 the assignments y1 = 1 and y2 = 1, and, in turn, g = 1.

(However, setting g = 1 does not propagate Fupward_ to yi or xi.) Thus, a set B of

gates of D activates D if and only if for �0 : B Y {1}, all clauses of F[�0] can be

satisfied using several steps of unit propagation; that is, B is a weak UP-backdoor

set of F. Hence we have shown that some starting set of size at most k activates

D if and only if F has a weak UP-backdoor set of size at most k. Consequently,
W[P]-hardness of WEAK UP-BACKDOOR follows from Lemma 1.

84 STEFAN SZEIDER



Next we show that W[P]-hardness also holds for WEAK UP + PL-BACKDOOR by

proving that every weak UP + PL-backdoor set of F is a weak UP-backdoor set.

Consider ; m B � var(F) and �0 : B Y {1}. First we observe that for any variable

x 2 var(F), the negative literal x cannot be pure in F[�0], since otherwise we

could infer x = 0 by means of pure literal elimination, but then F[�0] would be

unsatisfiable. Since the circuit D has no output gates, every variable of F occurs

as xi or yi in some set Fg. However, for every pair of variables xi, yi, some Fg

contains the binary clauses xi; yif g and xi; yif g. Thus, for xi being a pure literal of

F[�0], yi 2 B must prevail. Then, however, F[�0] contains the unit clause {xi},
and so xi = 1 can be inferred by unit propagation, and pure literal elimination is

not needed. Similarly, if yi is a pure literal of F[�0], then F[�0] contains the unit

clause {yi}, and again yi = 1 can be inferred by unit propagation. We conclude

that pure literal elimination is redundant for F[�0]. Thus, it follows by induction

on ªvar(F)\Bª that B is a weak UP + PL-backdoor set of F if and only if B is a

weak UP-backdoor set of F. Hence WEAK UP + PL-BACKDOOR is W[P]-hard. Ì

LEMMA 5R The problems STRONG UP + PL-BACKDOOR and STRONG UP-BACKDOOR are
W[P]-hard.

ProofR Let S 2 {UP + PL, UP}. We reduce WEAK S-BACKDOOR. Let F be a formula

with exactly one satisfying total assignment � ; w.l.o.g., we assume that � assigns

1 to each variable of F. We obtain a formula F* from F by taking for every x 2
var(F) a new variable x* and adding the clauses {x, x*} and x; x*

 �
to F. Note

that � also satisfies F* and that every satisfying assignment �* of F* extends � .
We show that F has a weak S-backdoor set of size at most k if and only if F*

has a strong S-backdoor set of size at most k.
Let B be a weak S-backdoor set of F. Thus, with input F[�0], �0 : B Y {1},

the subsolver S finds the assignment � that satisfies F. Since the presence of

clauses {x, x*} and x; x*
 �

does not prevent any application of unit propagation

or pure literal elimination, the subsolver S finds the assignment � also with input

F*[�0]. Hence B is a weak S-backdoor set of F*. The set B* = {x*: x 2 B} is

evidently a weak S-backdoor set of F* and we have ªBª = ªB*ª. However, B*
is also a strong S-backdoor set of F*, since, by symmetry, it does not matter

whether a variable x* is set to 0 or set to 1.

Conversely, let B* be a strong S-backdoor set of F*. Since F* is satisfiable,

B* is also a weak S-backdoor set of F*; thus S extends �0*: B* Y {1} to a

satisfying assignment of F*. Since x; x*
 � 2 F*, x* = 1 yields x = 1 by unit

propagation. Hence we can replace each x* 2 B* by x and still have a weak S-
backdoor set B := {x 2 var(F) : x 2 B* or x* 2 B*} with ªBª e ªB*ª. Thus, the
subsolver S extends �0 : B Y {1} to a satisfying assignment of F*. The clauses

in F*\F are irrelevant for such extension, since as early as a variable x 2 var(F)
gets the value 1 under some extension of �0, the clauses {x, x*} and x; x*

 �
are

removed. Consequently B is also a weak S-backdoor set of F. Ì

BACKDOOR SETS FOR DLL SUBSOLVERS 85



LEMMA 6R WEAK PL-BACKDOOR is W[P]-hard and remains W[P]-hard for CNF
formulas that have exactly one satisfying total assignment.

ProofR We reduce CYCLIC MONOTONE CIRCUIT ACTIVATION as in Lemma 4. Again, let

D = (G, E, l) be a cyclic monotone circuit without input or output gates and

where all gates are binary. For each gate g 2 G we define a set Fg of clauses , and
we obtain a formula F by taking the union of all sets Fg with g 2 G. For an AND-

gate g = x1 $ x2, the set Fg contains the clauses

x1; y1f g; x1; y1f g;
x2; y1f g; x2; y1f g;
y1; gf g;

for an OR-gate g = x1 ¦ x2, the set Fg contains the clauses

x1; x2; y1f g;
x1; x2; y1f g;
y1; gf g;

the variables yi are private variables. We have G � var(F), and since D has no

input gates, var(F)\G is the set of private variables. We show that F has a weak

PL-backdoor set of size at most k if and only if some starting set of size at most

k activates D. As in the proof of Lemma 4 it follows from the definition of the

sets Fg, that the only satisfying total assignment of F sets all variables to 1. Pure

literal elimination on Fg behaves exactly as the activation process on the

corresponding gate: for example, for an AND-gate g = x1 $ x2, if �0(x1) = �0(x2) = 1,
then the clauses {x1,y1}, x1; y1f g, {x2, y1}, and x2; y1f g are removed from the

formula and g becomes a pure literal; thus g = 1 follows. Hence a set B � G of

gates activates D if and only if B is a weak PL-backdoor set of F. By replacing

private variables yi by xi, we can find for every weak PL-backdoor set B of F a

weak PL-backdoor set B0 � G with ªB0ª e ªBª. Hence F has a weak PL-backdoor

set of size at most k if and only if some starting set of size at most k activates D.
Thus we have reduced CYCLIC MONOTONE CIRCUIT ACTIVATION to WEAK PL-BACKDOOR, and

the lemma follows. Ì

LEMMA 7R The problem STRONG PL-BACKDOOR is W[P]-hard.
ProofR We reduce WEAK PL-BACKDOOR. Let F be a formula with exactly one

satisfying total assignment � ; w.l.o.g., we assume that � assigns 1 to each

variable of F. We obtain a formula F* from F by adding the unit clause {x} for

every variable x of F; that is,

F* ¼ F [ xf g : x 2 var Fð Þf g:

Evidently, � is also the unique satisfying total assignment of F*. Let ; m B �
var(F) and �0 : B Y {1}. We observe that a variable is pure in F[�0] if and

86 STEFAN SZEIDER



only if it is pure in F*[�0]. Hence, it follows by induction on ªvar(F)\Bª that

B is a weak PL-backdoor set of F if and only if B is a weak PL-backdoor set of

F*. On the other hand, let �0
0 : B Y {0, 1} be any assignment different from

�0. There is at least one x 2 var(F) such that �0
0(x) = 0. Since {x} 2 F*, F*[�0

0]
contains the empty clause, and so the unsatisfiability of F*[�0

0] can be

decided by any subsolver. Thus, if B is a weak PL-backdoor set of F, B is also a

strong PL-backdoor set of F. Since F* is satisfiable, every strong PL-backdoor set

of F* is also a weak PL-backdoor set of F*. In summary, F has a weak PL-

backdoor set of size at most k if and only if F* has a strong PL-backdoor set

of size at most k. Hence W[P]-hardness of STRONG PL-BACKDOOR follows from

Lemma 6. Ì

In view of the above lemmas we conclude that all the considered problems are

W[P]-complete.

THEOREM 1R The problems WEAK S-BACKDOOR and STRONG S-BACKDOOR are
W[P]-complete for each subsolver S 2 {UP + PL, UP, PL}.

7. Final Remarks

In this paper we have determined the parameterized complexity of the backdoor

set detection problem for subsolvers that arise from the DLL/DP procedures. Our

results indicate that these problems are computationally hard; it is very unlikely

that, in the worst case, smallest backdoor sets for DLL subsolvers can be found

more efficiently than by brute force search. Complementary to the findings of the

present paper are the results of Nishimura, Ragde, and Szeider [9] on the para-

meterized complexity of backdoor set detection with respect to the syntactically

defined classes HORN and 2-CNF. It turns out that, although weak backdoor set

detection with respect to these classes is W[P]-hard, the detection of strong

backdoor sets is fixed-parameter tractable! The identification of further

polynomial-time classes of SAT instances that allow fixed-parameter tractable

backdoor set detection is a challenging new direction of research. For example, it

would be interesting to know whether the detection of strong backdoor sets w.r.t.

the class RHORN of renamable Horn formulas is fixed-parameter tractable. It is

well known that RHORN properly contains the class of all Horn formulas, and

RHORN is itself a proper subclass of the class of formulas decidable by unit

propagation.

References

1. Abrahamson, K. A., Downey, R. G. and Fellows, M. R. (1995) Fixed-parameter tractability

and completeness. IV. On completeness for W[P] and PSPACE analogues, Ann. Pure Appl.
Logic 73(3), 235Y276.

BACKDOOR SETS FOR DLL SUBSOLVERS 87



2. Cook, S. A. and Mitchell, D. G. (1997) Finding hard instances of the satisfiability problem: A

survey, in Satisfiability problem: theory and applications (Piscataway, NJ, 1996), American

Mathematical Society, pp. 1Y17.
3. Davis, M., Logemann, G. and Loveland, D. (1962) A machine program for theorem-proving,

Commun. ACM 5, 394Y397.
4. Davis, M. and Putnam, H. (1960) A computing procedure for quantification theory, J. ACM

7(3), 201Y215.
5. Downey, R. G. and Fellows, M. R. (1999) Parameterized Complexity, Monographs in

Computer Science. Springer.

6. Flum, J. and Grohe, M. (2004) Parameterized complexity and subexponential time, Bull. Eur.
Assoc. Theor. Comput. Sci. 84, 71Y100.

7. Interian, Y. (2003) Backdoor sets for random 3-SAT, in Sixth International Conference on
Theory and Applications of Satisfiability Testing, S. Margherita Ligure, Portofino, Italy, May
5Y8, 2003, (SAT 2003), informal proceedings, pp. 231Y238.

8. Malik, S. (1994) Analysis of Cyclic Combinatorial Circuits, IEEE Trans. Comput.-Aided Des.
13(7), 950Y956.

9. Nishimura, N., Ragde, P. and Szeider, S. (2004) Detecting backdoor sets with respect to horn

and binary clauses, in H. Hoos and D. G. Mitchell (eds.), Seventh International Conference
on Theory and Applications of Satisfiability Testing, 10Y13 May, 2004, Vancouver, BC,
Canada (SAT 2004), informal proceedings, pp. 96Y103.

10. Ruan, Y., Kautz, H. A. and Horvitz, E. (2004) The backdoor key: A path to understanding

problem hardness, in D. L. McGuinness and G. Ferguson (eds.), Proceedings of the 19th
National Conference on Artificial Intelligence, 16th Conference on Innovative Applications of
Artificial Intelligence, pp. 124Y130.

11. Williams, R., Gomes, C. and Selman, B. (2003a) Backdoors to typical case complexity, in G.

Gottlob and T. Walsh (eds.), Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, IJCAI 2003, pp. 1173Y1178.

12. Williams, R., Gomes, C. and Selman, B. (2003b) On the connections between backdoors,

restarts, and heavy-tailedness in combinatorial search, in Sixth International Conference on
Theory and Applications of Satisfiability Testing, S. Margherita Ligure, Portofino, Italy, May
5Y8, 2003 (SAT 2003), informal proceedings, pp. 222Y230.

88 STEFAN SZEIDER



The Complexity of Pure Literal Elimination

JAN JOHANNSEN
Institut f€ur Informatik, Ludwig-Maximilians-Universit€at M€unchen, M€unchen, Germany

Abstract. The computational complexity of eliminating pure literals is calibrated for various

classes of CNF formulas. The problem is shown to be P-complete in general, NL-complete for 2-

CNF, and SL-complete for CNF formulas with at most two occurrences of each variable.

Key words: pure literal, completeness, computational complexity.

1. Introduction and Preliminaries

A literal a is pure in a CNF formula F if a does not occur in F. Pure literals can
always be set to true without affecting satisfiability, which amounts to the same

as removing clauses containing them. Since this can lead to other literals be-

coming pure, the process needs to be iterated to obtain a satisfiability equivalent

formula without any pure literals. This process is known as pure literal elimination.

The elimination of pure literals is a common heuristic used in many satis-

fiability algorithms. It was part of the original DLL algorithm (Davis et al.,

1962), and it is still employed by those DLL-type backtracking algorithms that

achieve the best theoretical worst-case upper bounds for 3-SAT (Kullmann,

1999; Schiermeyer, 1996). The currently most efficient implementations of DLL-

type SAT solvers, like Chaff (Moskewicz et al., 2001) or Berkmin (Goldberg and

Novikov, 2002), use a data structure that is optimized for unit propagation, and

therefore sacrifice the pure literal heuristic, while other contemporary solvers,

like OKsolver (Kullmann, 2002), still use the heuristic.

On another note, pure literal elimination becomes essential again for the ef-

ficient implementation of solvers for quantified Boolean formulas (QBF): it

appears to be crucial (according to Letz (2004), personal communication) for the

performance of Semprop (Letz, 2002), currently one of the most efficient QBF

solvers, and is indeed employed by most of the QBF solvers that participated in

the 2003 QBF solver evaluation (Le Berre et al., 2003).

We will determine precisely the computational complexity of pure literal

elimination for different classes of formulas. Next to the complexity class P of

problems computable in polynomial time, we will consider classes defined by

logarithmic space-bounded algorithms employing different forms of non-

determinism. Among these, the classes L of deterministic and NL of non-

deterministic logarithmic space are the most familiar ones.

Journal of Automated Reasoning (2005) 35: 89Y95
DOI: 10.1007/s10817-005-9008-8

# Springer 2005



Less known perhaps is the class SL defined by symmetric nondetermin-

istic logarithmic space (Lewis and Papadimitriou, 1982), which lies between L
and NL. Just as NL exactly captures the complexity of the reachability problem

in directed graphs, SL is the precise complexity of reachability in undirected

graph, since this problem (UGAP) is complete for SL (Jones et al., 1976). It was

shown recently by Reingold (2005) that UGAP is in L, and hence SL = L.
Nevertheless, we still think there is some significance to the class SL, as will be
explained below.

Our main result shows that the elimination of pure literals is inherently
sequential; technically, this means that it is complete for P. Hence, there is no

hope for efficient parallel or small-space implementations of the heuristic.

For a formula F in CNF, let pl(F) be the formula obtained from F by deleting

all clauses that contain a pure literal. Let F* denote the least fixed point of this

operation, that is, define

F0 :¼ F
Fiþ1 :¼ pl Fið Þ
F* :¼ Fr where r is the least i s:t: Fi ¼ Fiþ1:

This algorithm computes F* in polynomial time, since the operation pl() is

computable in logarithmic space (even in the much smaller class AC0), and the

number r of iterations is bounded by n.
The following decision problem PL is obviously equivalent to the problem of

computing F*:

Given a formula F = C1 $ . . .$ Cm in CNF, and 1 e i e m, does the clause Ci

occur in F*?

Therefore, we concentrate on the complexity of this decision problem. By the

above algorithm, PL is in P. We will study the complexity of the problem PL
for various classes of formulas.

For k; ‘ 2 N, let k-CNF and CNF(‘) denote the classes of formulas in CNF

having at most k literals per clause and at most ‘ occurrences of each variable,

respectively. k-CNF(‘) denotes the class of formulas obeying both restrictions.

The complexity of the satisfiability problem for these classes is well known: it

is NP-complete already for 3-CNF(3), but NL-complete for 2-CNF (Jones et al.,

1976) and L-complete for CNF(2) (Johannsen, 2004). We will completely clas-

sify the complexity of the problem PL for these formula classes.

We show that as in the case of satisfiability, the problem PL for 3-CNF(3) is

already as hard as possible, in this case P-complete. For 2-CNF formulas, PL is

exactly as hard as satisfiability, namely, NL-complete.

The most unexpected case, which was the starting point of this whole inves-

tigation, is that of CNF(2). It was suggested to the author several times that the

algorithm showing that satisfiability for these formulas is in L (Johannsen, 2004)

90 JAN JOHANNSEN



could be simplified by first eliminating pure literals. This way the algorithm

would only need to work with ordinary graphs instead of the tagged graphs (see

definition below.) We show here that this is not an option, since removing pure

literals from a CNF(2)-formula is actually more complex than testing its satis-

fiability: the problem PL for these formulas is SL-complete.

Even though we know now from Reingold (2005) that SL = L, we think there

is still a conceptual difference in difficulty between a typical logarithmic space

algorithm and Reingold’s algorithm: where the former uses only constantly many

pointers into the input data structure, the latter also needs logarithmically many

registers storing a constant amount of information each. This distinction is

blurred by the Turing machine model, and it remains to be seen whether it can be

made precise, or whether a Btypical’’ logarithmic space algorithm for UGAP can

be found. Until this question is resolved, it still makes sense to regard an SL-
completeness result as indicating that a problem is harder than one in L.

2. The General Case

We first show that for general formulas in CNF, the problem is P-complete.
Later we will verify that the reduction still works if the numbers of literals
per clause and occurrences of variables are bounded by 3.

The following problem AGAP, the alternating graph accessibility problem, is

well known to be P-complete (cf. Greenlaw et al., 1995):

Given a directed graph G = (V, E) with a partition V = O ª M, and vertices s, t
2 V, does APATH(s, t) hold, where the predicate APATH(x, y) is inductively

defined by

Y x = y, or
Y y 2 M, and there is a z with (z, y) 2 E and APATH(x, z), or
Y y 2 O, and APATH(x, z) holds for all z with (z, y) 2 E?

THEOREM 1. PL is complete for P.
Proof. As remarked above, the problem is in P. To show it is hard for P, we

reduce AGAP to PL as follows:

For a given instance (G, s, t) of AGAP, we construct a formula F(G, s). The
variables of F(G, s) are ye for every edge e 2 E, a variable xv for every vertex v 2
O, and variables xv

1, . . . , xv
k for every vertex v 2 M of in-degree k, plus one more

variable z.
Let v be a vertex with ingoing edges e1, . . . , ek and outgoing edges e1

0, . . . , e0‘.
If v 2 O, then there is a clause

Cv ¼ xv _ ye10 _ . . . _ ye‘0

THE COMPLEXITY OF PURE LITERAL ELIMINATION 91



and for each of the edges ej for 1 e j e k, the clauses

xv _ yej and yej :

If v 2 M, then there is a clause

Cv ¼ x1v _ . . . _ xkv _ ye 01 _ . . . _ ye 0‘
and for each of the edges ej for 1 e j e k, the clauses

x j
v _ yej and yej :

Additionally, the clause Cs contains the variable z, i.e., if v = s, the clause Cs is

x1s _ . . . _ xks _ ye0
1
_ . . . _ ye0

‘
_ z:

Note that the variable z does not occur in any other clause.

LEMMA 2. For every v 2 V, if APATH(s, v) holds, then Cv =2 F(G, s)*.
Proof. We prove by induction along the definition of APATH(s, v) that for

every v with APATH(s, v) there is an i such that v =2 Fi.

For v = s, the clause Cs does not occur in F1 = pl(F), since it contains the pure
literal z.

Now let v have predecessors u1, . . . , uk joined to v by edges ej = (uj, v) for 1 e
j e k.

If v 2 O, and APATH(s, uj) holds for every j, then by the induction hypothesis

there is an ij such that Cuj =2Fij for every j. Thus in Fij , the literal yej is pure, and
thus the clause yej _ xv does not occur in Fijþ1. Thus for r = max1 e j e k ij + 1, the

literal xv is pure in Fr, and hence Cv does not occur in Fr+1.

Similarly, if v 2 M, and APATH(s, uj) holds for some j, then by the induction

hypothesis there is an i such that Cuj =2 Fi. By the same reasoning as in the

previous case, xv
j is pure in Fi+1, and hence Cv =2 Fi+2. Ì

LEMMA 3. For every v 2 V, if Cv =2 F(G, s)*, then APATH(s, v) holds.
Proof. Let Cv =2 F(G, s)*. We prove the claim by induction on i such that v 2

Fi \Fi+1. For i = 0, the only clause in F0\F1 is Cs, and APATH(s, s) holds by

definition, which gives the base case.

Let again v have predecessors u1, . . . , uk joined to v by edges ej = (uj, v) for 1
e j e k, and let Cv 2 Fi \ Fi+1.

If v 2 O, then xv must be pure in Fi, since due to the unit clauses yf	 , the
literals yfv cannot become pure as long as Cv is present. Thus for each edge ej, the
clause yej _ xv does not occur in Fi, and thus for some ij < i, it is in FijnFijþ1.
Therefore, yej is pure in Fij , and hence Cuj 2 Fi0jnFi0j for some ij

0
< ij. By the

induction hypothesis, APATH(s, uj) holds for every j, and consequently APATH(s, v)
holds as well.

The case where v 2 M is similar. Ì

It follow that APATH(s, t) holds iff Ct =2 F(G, s)*, and thus the construction

reduces AGAP to PL.

92 JAN JOHANNSEN



For a vertex v in a directed graph, let the in-degree in-deg(v) denote the

number of edges going into and the out-degree out-deg(v) the number of edges

leaving v, so that deg v = in-deg v + out-deg v. Observe that the width of the

clause Cv is 1 + out-deg v for v 2 O, and in-deg v + out-deg v for v 2 M. Also, the
number of occurrences of the variables xv for v 2 O is 1 + in-deg v, and all other

variables occur at most three times.

Thus the reduction yields a formula in 3-CNF(3) if the graph G has the

following properties:

Y every vertex v has deg v e 3,
Y every vertex v has in-deg v e 2 and out-deg v e 2.

It is easily verified that the problem AGAP remains complete for P for such
graphs. We can reduce the general case to this special case by replacing each
vertex v with ingoing edges e1, . . . , ek and outgoing edges e1

0, . . . , e‘0 by a
gadget as shown in Figure 1. All the k + ‘ j 2 new vertices are of the same
type as v: if v 2 M, then they all are in M, and if v 2 O, they all are in O.
Moreover, in the new graph the vertex s will be the k j 1st vertex (marked by
a dot in the figure) of the chain corresponding to s in the original graph, and
similarly for t.

COROLLARY 4. PL for 3-CNF(3) formulas is complete for P.

3. The Case of CNF(2)

A tagged graph G = (V, E, T ) is an undirected multigraph (V, E) with a

distinguished set T � V of vertices. We refer to the vertices in T as the tagged
vertices.

From a formula F 2 CNF(2), we construct a tagged graph G(F) as follows:

Y G(F) has a vertex vC for every clause C in F.
Y If clauses C and D contain a pair of complementary literals x and x, then

there is an edge ex between vC and vD.
Y If C contains a pure literal, then vC is tagged.

Figure 1. Reduction of AGAP to the special case.

THE COMPLEXITY OF PURE LITERAL ELIMINATION 93



THEOREM 5. PL for formulas in CNF(2) is complete for SL.
Proof. Consider a formula F. The graph G(pl(F)) is obtained from G(F) by

removing the tagged vertices and tagging the remaining vertices that used to be

their neighbors. Thus, by iterating we see that G(F*) is obtained by removing all

connected components from G(F) that contain tagged vertices.

Therefore the following algorithm decides PL: given F and a the number i of
a clause Ci in F, loop through all tagged vertices in G(F) and verify for each of

them whether it is connected to vCi
. This is a logarithmic space algorithm with an

oracle for UGAP; thus PL is in LSL, which is known to be the same as SL (Nisan

and Ta-Shma, 1995).

To show hardness for SL, we reduce UGAP to PL as follows: For an un-

directed graph G = (V, E), we construct a formula F(G) as follows: we introduce
one variable xe for every edge e 2 E, and for each vertex v 2 V, we construct a

clause Cv that contains one literal for each edge e incident to v. This literal is xe,
if e connects v to a higher numbered vertex, and xe otherwise. Finally we add an

additional variable ys to the clause Cs. Obviously, Ct 2 F(G)* if and only if t is
reachable from s. Ì

4. The Case of 2-CNF

Let RC denote the following decision problem:

Given a directed graph G and vertex s in G, is there a cycle in G reachable

from s?

This problem is NL-complete, since it is easily seen to be in NL by the

following algorithm: guess a vertex v, and verify nondeterministically that v is

reachable from s and that v is reachable from itself by a nontrivial path. On the

other hand, the NL-complete problem of deciding whether G contains a cycle

(Jones, 1975) can be reduced to RC by adding a new source s and edges from s to
every vertex in G.

THEOREM 6. PL for 2-CNF formulas is NL-complete.
Proof. We consider the same directed graph G(F) that is also used in the NL-

algorithm for 2-SAT. It has a vertex va for every literal a, and for every clause a
¦ b, there are two edges, one from a to b and one from b to a. Moreover, for each

unit clause a there is an edge from a to a.
Note that each occurrence of the complementary literal a yields an edge out of

va, therefore the pure literals in F correspond to sinks in G(F). A literal becomes

a pure in some Fi if all paths starting from va in G(F) end in a sink, i.e., no cycle

is reachable from a.
An induction on i shows that this sufficient criterion is also necessary: the

base case i = 0 is obvious, and for the induction step consider a that is pure in Fi

for i > 0. Then all literals b occurring together with a in a clause must be pure in

94 JAN JOHANNSEN



some Fj for j < i. By the induction hypothesis, every path starting from any of the

vertices vb for these literals b ends in a sink. Since these vb are all the successors
of va, all paths starting from va end in a sink as well.

Therefore, a clause C does occur in F* iff no literal in C is pure in some Fi iff

for every literal a in C, a cycle is reachable from va in G(F). This can be tested in

nondeterministic logarithmic space; thus the problem is in NL.
To show it is NL-hard, we reduce RC to PL. To this end, we build a formula

F(G) from a directed graph G = (V, E) and s 2 V, where w.l.og. we assume that s
is a source, as follows: There is a variable xv for every vertex v 2 V, and for

every edge (u, v) 2 E we add a clause xu _ xv. Moreover, we add a unit clause xu
for every source u in G. Thus the only pure literals in F(G) are xv for the sinks v
in G. As above, it follows that the unit clause xs occurs in F(G)* if and only if a

cycle is reachable from s in G. Ì

References

Davis, M., Logemann, G. and Loveland, D. (1962) A machine program for theorem proving,

Commun. ACM 5, pp. 394Y397.
Goldberg, E. and Novikov, Y. (2002) BerkMin: a fast and robust SAT-solver, in Design,

Automation, and Test in Europe (DATE ’02), pp. 142Y149.
Greenlaw, R., Hoover, H. J. and Ruzzo, W. L. (1995) Limits to Parallel Computation, Oxford

University Press.

Johannsen, J. (2004) Satisfiability problems complete for deterministic logarithmic space, in V.

Diekert and M. Habib (eds.), 21st International Symposium on Theoretical Aspects of Computer
Science (STACS 2004), pp. 317Y325.

Jones, N. D. (1975) Space bounded reducibility among combinatorial problems, J. Comput. Syst.
Sci. 11, pp. 65Y85.
Jones, N. D., Lien, Y. E. and Laaser, W. T. (1976) New problems complete for nondeterministic

log space, Math Syst. Theory. 10, pp. 1Y17.
Kullmann, O. (1999) New methods for 3-SAT decision and worst-case analysis, Theor. Comp. Sci.

223(1Y2), pp. 1Y72.
Kullmann, O. (2002) Investigating the behaviour of a SAT solver on random formulas, Submitted.

Le Berre, D., Simon, L. and Tacchella, A. (2003) Challenges in the QBF arena: the SAT’03

evaluation of QBF solvers, in Proceedings of the Sixth International Conference on Theory and
Applications of Satisfiability Testing (SAT2003), pp. 468Y485, Springer LNCS 2919.

Letz, R. (2002) Lemma and model caching in decision procedures for quantified Boolean

formulas, in U. Egly and C. G. Ferm€uller (eds.), TABLEAUX 2002, pp. 160Y175.
Letz, R. (2004) personal communication.

Lewis, H. R. and Papadimitriou, C. H. (1982) Symmetric space-bounded computation, Theor.
Comp. Sci. 19, pp. 161Y187.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. (2001) Chaff: Engineering

an efficient SAT solver, in Proceedings of the 38th Design Automation Conference (DAC’01).
Nisan, N. and Ta-Shma, A. (1995) Symmetric logspace is closed under complement, Chic. J.

Theor. Comput. Sci.
Reingold, O. (2005) Undirected ST-connectivity in log-space, To appear in Proceedings of the 37th

ACM Symposium on Theory of Computing.
Schiermeyer, I. (1996) Pure literal lookahead: an O(1.497n) 3-satisfiability algorithm, in J. Franco,

G. Gallo, H. Kleine B€uning, E. Speckenmeyer and C. Spera (eds.), Workshop on the
Satisfiability Problem.

THE COMPLEXITY OF PURE LITERAL ELIMINATION 95



Clause Weighting Local Search for SAT

JOHN THORNTON
Institute for Integrated and Intelligent Systems, Griffith University, PMB 50,
Gold Coast Mail Centre, Queensland 9726, Australia.
e-mail: j.thornton@griffith.edu.au

Abstract. This paper investigates the necessary features of an effective clause weighting local

search algorithm for propositional satisfiability testing. Using the recent history of clause weighting

as evidence, we suggest that the best current algorithms have each discovered the same basic frame-

work, that is, to increase weights on false clauses in local minima and then to periodically normalize

these weights using a decay mechanism. Within this framework, we identify two basic classes of

algorithm according to whether clause weight updates are performed additively or multiplicatively.
Using a state-of-the-art multiplicative algorithm (SAPS) and our own pure additive weighting

scheme (PAWS), we constructed an experimental study to isolate the effects of multiplicative in

comparison to additive weighting, while controlling other key features of the two approaches,

namely, the use of pure versus flat random moves, deterministic versus probabilistic weight

smoothing and multiple versus single inclusion of literals in the local search neighbourhood. In

addition, we examined the effects of adding a threshold feature to multiplicative weighting that

makes it indifferent to similar cost moves. As a result of this investigation, we show that additive

weighting can outperform multiplicative weighting on a range of difficult problems, while

requiring considerably less effort in terms of parameter tuning. Our examination of the differences

between SAPS and PAWS suggests that additive weighting does benefit from the random flat move

and deterministic smoothing heuristics, whereas multiplicative weighting would benefit from a

deterministic/probabilistic smoothing switch parameter that is set according to the problem

instance. We further show that adding a threshold to multiplicative weighting produces a general

deterioration in performance, contradicting our earlier conjecture that additive weighting has better

performance due to having a larger selection of possible moves. This leads us to explain

differences in performance as being mainly caused by the greater emphasis of additive weighting

on penalizing clauses with relatively less weight.

Key words: constraint satisfaction, satisfiability, local search.

1. Introduction and Background

Clause weighting algorithms for satisfiability testing have formed an important

research area since their introduction in the early 1990s. Since then various

improvements have been proposed, resulting in the two best-known recent

algorithms: the discrete Lagrangian method (DLM) (Wu and Wah, 2000) and

scaling and probabilistic smoothing (SAPS) (Hutter et al., 2002). While these

methods differ in important aspects, both use the same underlying trap avoiding

strategy: increasing weights on unsatisfied clauses in local minima and then

periodically adjusting weights to maintain effective weight differentials during

the search.

Journal of Automated Reasoning (2005) 35: 97Y142
DOI: 10.1007/s10817-005-9010-1

# Springer 2006



The earliest clause weighting algorithms, such as Breakout (Morris, 1993),

repeatedly increased weights on unsatisfied clauses and so allowed unrestricted

weight growth during the search. Flips were then chosen on the basis of

minimizing the combined weight of the unsatisfied clauses. In 1997, Frank

proposed a new weight decay algorithm that updated weights on unsatisfied

clauses using a combination of a multiplicative decay rate and an additive weight

increase. While Frank’s work laid the ground for future advances, his decay

scheme produced relatively small improvements over earlier weighting ap-

proaches. At this point, clause weighting algorithms proved competitive on many

smaller problems but were unable to match the performance of faster and simpler

heuristics, such as Novelty, on larger problem instances (McAllester et al., 1997).

As a key reason for developing incomplete local search techniques is to solve

problems beyond the reach of complete SAT solvers, the poor scalability of

clause weighting was a major disadvantage.

It was not until the development of DLM that a significant performance gain

was achieved. In its simplest form, DLM follows Breakout’s weight increment

scheme, but additionally decrements clause weights after a fixed number of

increases. DLM also alters the point at which weight is increased by allowing flat
moves that leave the weighted cost of the solution unchanged. These flat moves

are in turn controlled by a tabu list and by a parameter that limits the total

number of consecutive flat moves (Wu and Wah, 2000). In empirical tests DLM

proved successful at solving a range of random and structured SAT problems and

in particular was able to outperform the best nonweighting algorithms on many

larger and more difficult problem instances.

In another line of research, Schuurmans and Southey (2000) developed a fully

multiplicative weighting algorithm: smoothed descent and flood (SDF). SDF

introduced a new method for breaking ties between equal cost flips by ad-

ditionally considering the number of true literals in satisfied clauses. In situations

where no improving moves are available, SDF multiplicatively increases weights

on unsatisfied clauses and then normalizes (or smooths) clause weights so that

the greatest cost difference between any two flips remains constant. SDF’s

reported flip performance was promising in comparison to DLM, but these

results did not look at the more difficult problems for which DLM was especially

suited. In addition, SDF’s time performance did not compare well, due to the

overhead of adjusting weights on all clauses at each local minimum.

In subsequent work, SDF evolved into the exponentiated subgradient

algorithm (ESG) (Schuurmans et al., 2001), which in turn formed the basis of

the scaling and probabilistic smoothing (SAPS) algorithm (Hutter et al., 2002).

ESG and SAPS dispensed with SDF’s augmented cost function, and SAPS

further improved on the run-time performance of ESG by smoothing weights

only periodically, and increasing weights only on violated clauses in a local

minimum (rather than updating all clauses).

98 JOHN THORNTON



The basic idea of using weight penalties, or Lagrangian multipliers, to solve

discrete optimization problems was originally developed in the operations

research (OR) community (Everett, 1963), and has evolved into the area of

subgradient optimization. These approaches have significant similarities to the

weighting algorithms developed in the SAT community. However, as Schuurmans

et al. (2001) pointed out, the crucial difference is that OR techniques use linear

penalty functions, whereas SAT algorithms use nonlinear hinge penalty functions

that do not explicitly reward features or clauses that remain satisfied. In their

analysis of ESG, Schuurmans et al. further demonstrated that nonlinear penalty

functions have the better performance in the SAT domain.

The important point for the current research is not only that the leading SAT

clause weighting algorithms have converged on the same class of nonlinear hinge

penalty functions, but also that they have converged on the same basic frame-

work of weight control. One of the crucial steps from ESG to SAPS was the

realization that weight normalization can be split into two phases: first penalizing

false clauses in local minima and second periodically reducing weights according

to a problem specific parameter. As the number of false clauses at any point

during the search is relatively small compared to the total number of clauses, this

splitting of the weight control allows for regular and fast weight increases, while

the slower process of weight reduction occurs more infrequently, leading to

significant gains in time performance. With this change, the weight update

scheme of SAPS becomes almost identical in structure to the weight update

scheme of DLM: both increase weight when a local minimum is identified

(although using different identification criteria), and both periodically adjust

weights according to a parameter value that varies for different problems. SAPS

differs from DLM in using this parameter to probabilistically determine when

weight is reduced, whereas DLM deterministically reduces weight after a fixed

number of increases. Therefore, the remaining and crucial difference between the

weighting mechanisms of SAPS and DLM is the use of multiplicative as opposed

to additive weight updates.

It is of interest to note that a third clause weighting algorithm, GLSSAT

(Mills and Tsang, 1999), employs a similar weight update scheme, additively

increasing weights on the least weighted unsatisfied clauses and multiplicatively

reducing weights whenever the weight on any one clause exceeds a predefined

threshold. However, although GLSSAT performed well in comparison to

Walksat, it could not match DLM on larger problems. Also, an earlier study

(Thornton and Sattar, 1999) indicated that the basic approach of increasing

weights on the least weighted false clauses is not as effective as increasing

weights on all false clauses. For these reasons we decided to concentrate on

SAPS and DLM and leave a GLS type approach for future work.

The main aim of the study is to investigate whether an additive or multiplica-

tive weight update scheme is better for satisfiability testing. The secondary aim is

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 99



to discover whether the various subheuristics used in the two approaches provide

a useful contribution to performance. Given that SAPS and DLM both have some

claim to be considered as the state of the art in local search for SAT and that both

have separately hit upon the same underlying weighting structure, it now

becomes possible to compare additive and multiplicative clause weighting

without their relative performance being disguised by differing implementation

details. To perform this comparison, we started with the authors’ original version

of SAPS and changed it in small steps until it became an effective additive clause

weighting algorithm. By examining and empirically testing the effect of each step,

we set out to isolate exactly those features that are crucial for the success of each

approach. This resulted in the development of the pure additive weighting scheme

(PAWS). As the published results for SAPS have looked only at relatively small

problems, we also decided to evaluate SAPS and PAWS on an extended test set

that includes a selection of the more difficult problems for which DLM was

developed. In the remainder of the paper we describe in detail the development of

PAWS from SAPS and DLM and then present the results and conclusions of our

empirical study.

2. Clause Weighting Algorithms for SAT

Clause weighting local search algorithms for SAT follow the basic procedure of

repeatedly flipping single literals that produce the greatest reduction in the sum

of false clause weights. Typically, all literals are randomly initialized, and all

clauses are given a fixed initial weight. The search then continues until no

further cost reduction is possible, at which point the weight on all unsatisfied

clauses is increased, and the search is resumed, punctuated with periodic weight

reductions.

Clause weighting algorithms differ primarily in the schemes used to control

the clause weights, and in the definition of the points where weight should be

adjusted. Multiplicative methods, such as SAPS, generally adjust weights when

no further improving moves are available in the local neighbourhood. This can

be either when all possible flips lead to a worse cost or when no flip will improve

cost, but some flips will lead to equal cost solutions. As multiplicative real-

valued weights have much finer granularity, the presence of equal cost flips is

much more unlikely than for an additive approach, where weight is adjusted in

integer units. This means that additive approaches frequently have the choice

between adjusting weight when no improving move is available, or taking an

equal cost (flat) move.

Following the DLM literature (Shang and Wah, 1998), we consider a local
minimum to be a point or a connected area of equal cost moves where no further

cost improvement is possible (i.e., the area is surrounded by cost increasing

moves, and no combination of equal cost moves can ever escape). In this model,

100 JOHN THORNTON



a plateau is a connected area of equal cost moves that eventually lead to one or

more cost improving moves. An additive weighting algorithm, like DLM, will

continually encounter situations where both equal cost and cost increasing moves

are available, but is unable to distinguish between a plateau (where it is worth

continuing the search) and a local minimum (where weight should be increased

in order to escape).

Considerable effort has gone into developing strategies to help guide additive

weighting over potential plateau areas. While this is described as plateau

searching, it should be noted that such techniques search plateaus and local

minima indifferently. It should also be noted that the SAPS’ authors have

developed a different terminology to describe local search landscapes (see Hoos

and Stützle, 2005).

2.1. DLM AND SAPS

DLM has been described as Fad hoc_ (Schuurmans et al., 2001) and criticized for

requiring a large number of parameters to obtain optimum performance.

However, DLM has evolved through several versions, the last of which was

developed specifically to solve the larger towers of Hanoi and parity learning

problems from the DIMACS benchmarks (Wu and Wah, 2000). As already

discussed, the basic structure of DLM is similar to SAPS, except for the heuristic

used to control the taking of flat moves. In addition, although the last version of

DLM had 27 parameters, in practice only three of these require adjustment in the

SAT domain.

Of particular interest is that DLM uses a single parameter to control the

weighting process (corresponding to Maxinc in Figure 1), which determines when

weights are to be reduced. In contrast, SAPS requires two further parameters (a
and U ) to determine the amount that weights are multiplicatively scaled or

smoothed (in DLM, clause weight increases and decreases are implemented by

adding or subtracting one). The other two DLM parameters (
1 and 
2) are used

to control the flat move heuristic: Using the terms from Figure 2, if best < 0,

DLM will randomly select and flip any xi 2 L. Otherwise, if best = 0, and the

number of immediately preceding consecutive flat moves is < 
1 and Lt p t, then
DLM will randomly select and flip any xi 2 Lt, where Lt contains all flat move

literals that have not been flipped in the last 
2 moves. Otherwise, clause weights

are additively updated, as per Figure 1.

Although SAPS implements a fairly Fpure_ weighting algorithm, there are a

few implementation details that distinguish it from DLM (see Figure 2). The first

is the wp parameter that probabilistically controls whether a random flip is taken

when no cost improving move is available. This acts as an alternative to DLM’s

flat move heuristic. The second is that the set of local neighbourhood moves for

SAPS contains a single copy of each literal that can make a false clause (i.e., turn

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 101



it from false to true). In DLM, the neighbourhood consists of all literals in all

false clauses. This means that if a literal appears in more than one false clause, it

will appear more than once in the local neighbourhood, thereby increasing the

probability that it will be selected. Finally, as noted earlier, SAPS uses

probabilistic smoothing when adjusting clause weights, that is, if Psmooth is

set to 5Q then there is a 1 in 20 chance that weight will be adjusted after an

Figure 1. The pure additive weighting scheme (PAWS).

Figure 2. Scaling and probabilistic smoothing (SAPS).

102 JOHN THORNTON



increase. In contrast, DLM’s third parameter fixes the exact number of increases

before weight is decreased, and so represents a deterministic weight reduction

scheme.

Overall, there is little difference between DLM and SAPS in terms of

parameter tuning. While SAPS has four parameters (a , U , wp, and Psmooth) and a

basic version of DLM has three, in practice at least one of the SAPS parameters

can be treated as a constant and the others adjusted to suit (in this study wp is set

at 1Q). For both algorithms the process of parameter tuning is time consuming,

as optimal performance is highly dependent on the correct settings. This

compares poorly with simpler nonweighting algorithms, such as Walksat (Hoos,

2002), which generally require the tuning of only a single noise parameter. In

order to address this, a version of SAPS called Reactive SAPS (RSAPS) was

developed (Hutter et al., 2002) that automatically adjusts the Psmooth parameter

during the search. However we found this algorithm did not perform as well as a

properly tuned SAPS on our problem set, so we did not consider it further.

Hence, the main design criticism that can be levelled at DLM is that it relies

on a somewhat ad hoc flat move heuristic, whereas SAPS can search purely on

the basis of weight guidance (while taking the occasional random flip). From this

it could be argued that multiplicative weighting is superior to additive weighting

because it avoids the need for a flat move heuristic, that is, by making finer

weight distinctions between moves, the search space for a multiplicative method

will contain far fewer and smaller plateau areas. However, this assumes that the

overall performance of SAPS is at least as good as DLM’s and that the

effectiveness of additive weighting depends on plateau searching, both issues we

shall address later in the paper.

3. The Pure Additive Weighting Scheme (PAWS)

SAPS has demonstrated that effective local search guidance can be given by a

reasonably simple manipulation of clause weights. It has also outperformed

DLM on a range of SATLIB benchmark problems, in terms of both time and

median number of flips (Hutter et al., 2002). From this work several questions

arise: first how does SAPS perform on the larger DIMACS benchmark problems

for which DLM was developed? Second, the SAPS code is based on a very

efficient implementation of Walksat,j so to what extent is the superior time

performance of SAPS based on the details of this implementation? Third, does

the success of SAPS depend on multiplicative weighting? That is, can we obtain

the same quality of guidance using additive weighting, avoiding the use of the

j http://www.cs.washington.edu/homes/kautz/walksat/walksat-dist.tar.Z.uu.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 103



multiplicative update parameters a and U? And finally, does additive weighting

require a plateau searching strategy, with the associated tabu list length and flat

move parameters, to compensate for the coarser-grained nature of the additive

weight updates?

To answer these questions we developed a pure additive weighting scheme

(PAWS),j which we embedded directly into the SAPS source codejj (so the

same efficiencies were obtained), and tested PAWS on both the SATLIB

benchmarks used for SAPS and a selection of the DIMACS benchmarks used for

DLM.

PAWS takes a middle line between SAPS and DLM, first by doing away with

DLM’s plateau searching heuristic (and the associated 
1 and 
2 parameters) and

replacing it with a random flip heuristic. Now, whenever PAWS encounters a

situation where the best available move does not change the overall cost, it will

either take this move with probability Pflat or it will increase weight. In contrast,

DLM would always take the equal cost move unless it was on the tabu list

(controlled by 
2) or unless the maximum number of consecutive flat moves had

already been taken (controlled by 
1). PAWS retains DLM’s preference for

taking flat moves when no improving moves are available, by selecting random

moves only from the domain of available flat moves. In contrast, when SAPS

takes a random move (controlled by wp), it picks from the domain of all possible

moves, regardless of cost. Finally, PAWS retains DLM’s deterministic weight

reduction scheme and the multiple inclusion of literals that appear in more than

one false clause (whereas SAPS reduces weight probabilistically according to

Psmooth and includes only unique literals in its candidate move list).

Figure 1 shows the complete PAWS procedure, which is now controlled by

two parameters: Pflat which decides whether a randomly selected flat move will

be taken (corresponding to wp in SAPS), and Maxinc which determines at which

point weight will be decreased (corresponding to Psmooth in SAPS). As with wp in

SAPS, we found that Pflat can be treated as a constant, and for all subsequent

experiments it was set at 15Q. Hence PAWS requires the tuning of only a single

parameter, Maxinc, which we found to have roughly the same settings and

sensitivity as the equivalent parameter in DLM. On all our test problems the

optimum value of Maxinc was relatively easy to find, generally showing a similar

concave-shaped relationship with local search cost as that observed for Walksat’s

noise parameter in (Hoos, 2002) (for example, see Figure 3b). The requirement

to tune only a single parameter with a fairly stable relationship to cost gives

PAWS a significant practical advantage over DLM and SAPS, which typically

j PAWS is a simplification and improvement over our earlier MAX-AGE algorithm, which

was shown to be competitive with DLM on a range of larger SAT problems (Thornton et al., 2002).
jj http://www.cs.ubc.ca/davet/dls4sat/software/saps-1.0.tar.gz.

104 JOHN THORNTON



need considerably more effort to set up for a particular set of problems (see

Section 4.4 for a further discussion of parameter tuning).

3.1. DIFFERENCES BETWEEN SAPS AND PAWS

While PAWS comes close to being an additive version of SAPS, as discussed

earlier, it differs in three aspects:

1. Multiple Inclusion (m): PAWS allows optimal cost flips that appear in n false

clauses to also appear n times in its move list L (rather than exactly once).

2. Random Flat (r): PAWS probabilistically takes a random flat move when no

improving move is available (rather than allowing cost increasing moves).

3. Deterministic Smoothing (d): PAWS reduces weight deterministically after

Maxinc number of increases (rather than reducing weight with probability

Psmooth).

In order to distinguish the essential from the inessential features of the two

approaches, we developed four SAPS variants based on the inclusion of the

above heuristics:

1. SAPS+m: includes the multiple inclusion heuristic from PAWS.

2. SAPS+r: replaces the pure random move selection of SAPS with a random

flat move selection. Hence SAPS+r will (probabilistically) take a move in a

local minimum only if there is at least one move available that does not

increase the weighted solution cost.j

3. SAPS+d: replaces the probabilistic smoothing of SAPS with a deterministic

weight reduction scheme that smooths weights after a fixed number of

weight increases.

4. SAPS+a: uses all three heuristics at once, that is, multiple inclusion, random

flat move and deterministic smoothing. Hence SAPS+a is equivalent to

PAWS except for the use of multiplicative weighting.

We then developed four variants of PAWS that use the alternative SAPS

heuristics:

1. PAWS-m: discards the multiple inclusion heuristic, and considers only

distinct literals in move list L.
2. PAWS-r: discards the random flat move heuristic, and probabilistically

selects a move in a local minimum without consideration of cost.

j In the original SAPS source code, the authors used a 0.1 threshold to distinguish an

improving move from a zero cost move (see Figure 2). We therefore reused this value to define a

flat move for SAPS+r as any move causing a weighted cost change within the range of T0.1.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 105



3. PAWS-d: uses probabilistic rather than deterministic weight reduction.

4. PAWS-a: uses all three of the above heuristics at once. Hence PAWS-a is

equivalent to SAPS except for the use of additive weighting.

Finally, in our earlier work (Thornton et al., 2004), we observed that the

average length of move list L for PAWS tends to be longer than for SAPS. The

explanation for this difference is that multipliers create finer distinctions between

clause weights: as multiplicative weights are real-valued, the previous history of

clause weighting will be retained in small differences, even after smoothing.

Hence, in longer term searches, we would expect clause weights to become more

and more distinguished, making it increasingly unlikely that any two flips will

evaluate to the same cost. Conversely, additive weighting changes clause weights

by simply adding or subtracting one, and most weights are returned to a base

weight of one at some point in the search. Hence longer term residual weight is

eliminated, and the likelihood that different flips will evaluate to the same cost

remains relatively high, meaning additive weighting will generally have a greater

number of possible best cost moves to select from.

This led us to conjecture that differences in performance between SAPS and

PAWS may be explained by differences in the number of moves available during

the search. To test this, we developed a fifth variant of SAPS (SAPS+t) that

includes a threshold of indifference between moves. This threshold is compared

to an averaged flip cost, calculated by dividing the weighted cost change of a flip

(�wxi in Figure 2) by the current average clause weight. A flip is then included in

list L if its cost change is within a threshold value of the best cost change

available at that point in the search. This alters the SAPS move selection

heuristic from Figure 2 to the heuristic shown in Figure 4.

In the following empirical study the threshold heuristic is added to the

SAPS+a variant to make SAPS+t. Hence, SAPS+t is almost the same as PAWS,

remaining indifferent to finer move distinctions but retaining a multiplicative

clause weight ordering. In this way we can test our earlier conjecture that a

120000

125000

130000

135000

140000

145000

150000

155000

1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n 
F

lip
s

P_smooth

135000

140000

145000

150000

155000

160000

165000

110 120 130 140 150 160 170 180 190 200

M
ea

n 
F

lip
s

Max_inc

PAWS
Trendline

Figure 3. Parameter plots on the ais12 problem (for SAPS a = 1.25, U = 0.95).

106 JOHN THORNTON



longer L has a positive impact on performance, all else being equal (Thornton

et al., 2004).

4. Empirical Study

4.1. PROBLEM SET

To examine the relative performance of additive and multiplicative weighting,

and the influences of the various SAPS and PAWS heuristics, we designed an

experimental study using 29 benchmark problems that cover various dimensions

of problem size, difficulty and structure.

First, we took the problem set reported in the original study on SAPS (Hutter et

al., 2002), consisting of the median and hardest problems from several SATLIB

problem classes. Second, to test performance on larger problem instances, we

included the SATLIB ais12, logistics.d and bw-large.d blocks world problems,

the two most difficult DIMACS graph colouring problems (g125.17 and g250.29)

and the median and hardest DIMACS 16-bit parity learning problems (par16).

We then generated two sets of random 3-SAT problems from the accepted hard

region, each containing 20 instances, the first with 800 variables and the second

with 1,600 variables. To these we added the f800 and f1600 DIMACS problems

and selected the median and hardest problem from each set. Finally, we

generated a range of random binary CSPs, again from the accepted hard region,

and transformed them into SAT problems using the multivalued encoding

described in (Prestwich, 2003). These problems were divided into four sets of

five problems each, according to the number of variables (v), the domain size (d),

and the constraint density (c) in the original CSP, giving the 30v10d40c (bin30-

40), 30v10d80c (bin30-80), 50v15d40c (bin50-40) and 50v15d80c (bin50-80)

problem sets from each of which the hardest problem was selected.j

4.2. COMPLETE VERSUS LOCAL SEARCH

One of the key motivations for the development of local search techniques for

SAT is to solve problems beyond the reach of existing complete solvers.

Complete solvers, even if slower on particular instances, have the advantage

of unambiguously reporting if an instance is unsatisfiable. Hence, local search

for SAT is most applicable to problems that are too difficult for complete

search to solve in a reasonable time frame. This means that the scalability of

local search is important and that evaluations on problems that can easily be

solved by a complete solver are less decisive. To clarify this issue, we

additionally tested our problem set using the well-known DPLL complete

j Note that for all the larger randomly generated problems satisfiability was determined using

our own local search algorithms with a cut-off of 100 million flips. Hence we may have rejected

some harder satisfiable instances.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 107



solvers, Satz (version 214) (Li and Anbulagan, 1997) and zChaff (version

2004.11.15) (Moskewicz et al., 2001).

4.3. TESTING FOR SIGNIFICANCE

Local search run-times can vary significantly on the same problem instance, as

determined by the initial starting point and any subsequent randomized decisions.

For this reason empirical studies require the same problem to be solved multiple

times, and at least for the mean, median, and standard deviation to be reported.

However, it is still unclear exactly how much confidence we can have in the

reported differences between algorithms. Standard deviation is informative for

normally distributed data, but local search run-times are generally not normally

distributed, often having the median to the left of the mean and a number of

unpredictably distributed outliers. Hence standard comparisons that assume

normality, such as a two-sample t-test, are not reliable, and the level of statistical

confidence in differences between algorithms is rarely investigated.

However, nonparametric measures, such as the Wilcoxon rankYsum test, do

not rely on normality and assume only that the distributions to be compared have

a similar shape. To use the Wilcoxon test requires that the run-times (or number

of flips) from two sets of observations, A and B, are sorted in ascending order.

Then each observation is ranked (from 1 . . . N) and the sum of the ranks

for distribution A is calculated. This value (wA) can now be used to test the

hypothesis that distribution A lies to the left of distribution B, i.e., H1 : A < B,
using the normal approximation to the Wilcoxon distribution (Gibbons and

Chakraborti, 1992):j

z ¼ wA � nA N þ 1ð Þ=2� 0:5ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nAnB N þ 1ð Þ=12
p

;

where nA and nB are the number of observations in distributions A and B
respectively and N = nA + nB. Using the standard Z õ Normal(0, 1) tables, z will
give the probability P that the null hypothesis, H0 : A Q B, is true.

While the Wilcoxon test provides a good measure of overall performance, it

can miss situations where one algorithm has a better probability of solving a

problem within a certain time-range, even though its overall performance is

relatively poor. In such circumstances a hybrid or portfolio approach (Gent et al.,

1999) can produce better results, that is, using the algorithm that has the greater

solution probability in a given time-range. Hence, to test whether one algorithm

clearly dominates another, we produced run-time distributions (RTDs) (Hoos and

Stützle, 1998) to compare the best performing algorithm variants for each

problem. RTDs are used to analyze local search performance of multiple runs on

the same problem instance. By calculating and graphing the cumulative

j Assuming nA > 12, nB > 12 and that no rank values are tied.

108 JOHN THORNTON



percentage of runs that have been solved over time, a picture of the overall

behaviour of an algorithm on a problem can be obtained (see Figures 5 and 6).

More important, if the RTD distribution of one algorithm dominates another on

the same problem (i.e., at every time point it has solved a greater percentage of

runs, as with the PAWS RTD of Figure 5a), then we can be more confident that

the algorithm has the better performance. Conversely, if two RTD’s cross (as in

Figure 5b), then we cannot safely conclude that one is uniformly better than

another.

We therefore used a combination of the Wilcoxon test and an RTD analysis to

assess whether there is a significant difference in algorithm performance

according to the following rule: if the Wilcoxon rankYsum test is significant

for P < 0.05 and the RTD of the better algorithm dominates the other for all

solution probabilities > 0.1 (as with the PAWS RTDs of Figure 6), then the

algorithm is classed as significantly better on the problem instance.

4.4. PARAMETER SETTING

To make the empirical study feasible, we adopted a combination of exhaustive

and local search strategies for setting the parameters of individual algorithm

Figure 4. The SAPS+t move selection heuristic.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 0.1 1 10 100
run-time (secs)

PAWS
SAPS

PAWS
SAPS

 1 10  100 1000
run-time (secs)

so
lu

tio
n 

pr
ob

ab
ili

ty

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

so
lu

tio
n 

pr
ob

ab
ili

ty

a. SAPS and PAWS-m on bin50-80 b. SAPS+d and PAWS-d on bin50-40

Figure 5. Comparative run-time distributions for the large binary CSPs.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 109



variants. In the exhaustive phase, we tested a range of parameter settings for the

original SAPS and PAWS algorithms on each problem instance. As the issue of

the number and sensitivity of parameters is important to our overall evaluation,

we have taken a closer look at the parameter tuning process in the following two

subsections.

4.4.1. Tuning SAPS

As discussed earlier (see Section 2), SAPS has four parameters: a , U , Psmooth,

and wp. In the original study (Hutter et al., 2002), the SAPS authors fixed wp at

1Q and Psmooth at 5Q and manipulated a in the range of 1.1 . . . 1.3 and U in the

range of 0.2 . . . 0.9. However, they acknowledge that Bthere are better parameter

settings for almost all problem instances tested here. Determining these settings

manually can be difficult and time-consuming.^ The attempt to reduce this

difficulty led to the development of Reactive SAPS (RSAPS) (Hutter et al.,

2002). Here, instead of fixing Psmooth and manipulating a and U , the authors

fixed a , manually manipulated U , and set Psmooth using an automated reactive

mechanism.

As the problem set used in the current study contains several larger problems

on which SAPS has not been previously tested, and also because the question of

which SAPS parameters to fix and which to manipulate has yet to be settled, we

decided to test the three main SAPS parameters on an expanded range of settings,

varying a from 1.05 to 2.00 in steps of 0.05, U from 0.05 to 1.00 in steps of

0.05, and Psmooth from 4 to 8Q in steps of 1Q (keeping wp fixed at 1Q). For

problems that PAWS solves in fewer than one million flips, we allowed 100 runs

at each of the 20 � 20 � 5 possible settings. For the remaining problems

we allowed 10 runs at each setting and retested the best 10 of these at 100 runs.

We then sorted the results for each problem instance according to the mean flip

count and selected the best performing parameter setting for use in the main

study.

Figure 6. Comparative run-time distributions for f800-hard and par16-hard.

110 JOHN THORNTON



We first allowed SAPS such a wide range of parameter values to ensure that the

comparison with PAWS was not biased by a limited choice. Second, the

experiment allows us to examine the range and sensitivity of the SAPS parameters.

In Table I, we show the mean flip counts of the best parameter settings for SAPS

on each test set problem, in comparison to the recommended default settings of

a = 1.3, U = 0.8 and Psmooth = 5Q, with 100 runs on each problem and a cut-off

of 20 million flips (50 million for bin50-40). These results show that using

default parameter settings is not a practical approach, particularly on the larger,

more difficult problems. For instance, the default settings were unable to solve

any run on the g250.29, f1600-med and f1600-hard problems, and could only

solve one out of 100 runs on g125.17. The results also show that the best

performing algorithms have exploited nearly the full range of parameter settings

with a varying between 1.05 (bw_large.d) and 2.00 (par16-med), U varying

between 0.05 (g125.17) and 1.00 (logistics.d), and Psmooth varying between 4Q
(ais10) and 7Q (bw_large.c). However, the larger values for a appear only on

nonstatistically significant results (par16-med and par16-hardj). Ignoring these

two problems, a ranges more narrowly between 1.05 . . . 1.40.
Although the results show that a wide range of parameter values was used to

obtain the best performance, we have yet to consider the sensitivity of individual

parameters. It could be the case that one SAPS parameter dominates the others to

the extent that the variations in the dominated parameters do not significantly

affect performance. We can first reject the hypothesis that a is insignificant from

the bw_large.c result. Here a is the only parameter varied from the default, and

the result is a significant difference in performance. There are several similar

examples of a significant difference obtained by only manipulating U from the

default (i.e., flat200-med, uf200-hard, uf400-med, uf400-hard, and logistics.c).

Hence we can conclude that a and U are important parameters, with U showing

a significant difference at a sensitivity of at least 0.1 (for logistics.c) and a
showing a sensitivity of at least 0.15 (for bw_large.d).

However, as Table I does not show a significant difference arising from the

manipulation of Psmooth alone, we decided to look at an individual problem

(ais12) in more detail. From our initial parameter tests at 100 runs, the best

setting for SAPS on ais12 was a = 1.25, U = 0.95, and Psmooth = 4Q. In order to

test sensitivity, we decided to manipulate Psmooth from 1Q to 12Q in steps of 1Q
at 1,000 runs per setting, keeping the other parameters fixed at their tuned values.

The mean flip values for each of these settings are graphed in Figure 3a and show

there is a relationship between Psmooth and performance on this problem. We

performed a further Wilcoxon analysis between the 4Q and 5Q Psmooth settings

and found a nearly significant time difference at p = 0.06852. A second

comparison between the 4Q and 6Q settings did yield a significant difference at

p = 0.00013.

j Although not statistically different on flips the tuned par16 runs had better success rates.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 111



T
ab

le
I.

S
A
P
S
p
ar
am

et
er

tu
n
in
g
co
m
p
ar
is
o
n
:
S
A
P
S
d
ef
au
lt
s
ar
e
a

1
.3
0
,
U

0
.8
0
,
an
d
P
sm

o
o
th
5
Q
.

P
ro
b
le
m

T
u
n
ed

se
tt
in
g
s

T
u
n
ed

re
su
lt
s

D
ef
au
lt
re
su
lt
s

W
il
co
x
o
n

a
U

P
S
u
cc
es
s
(Q

)
M
ea
n
fl
ip
s

S
u
cc
es
s
(Q

)
M
ea
n
fl
ip
s

S
p
ee
d
-u
p

p
-v
al
u
e

S
ig
n
ifi
ca
n
t

b
w
_
la
rg
e.
a

1
.3
0

0
.8
0

6
1
0
0

2
,8
2
4

1
0
0

3
,0
0
0

1
.0
6

0
.1
3
0
6
6

�
b
w
_
la
rg
e.
b

1
.3
0

0
.8
0

5
1
0
0

4
5
,3
3
5

=
=

=
=

=

b
w
_
la
rg
e.
c

1
.1
0

0
.6
0

7
1
0
0

2
,1
0
3
,3
5
2

7
5

7
,0
3
4
,9
5
8

3
.3
4

0
.0
0
0
0
0

J
b
w
_
la
rg
e.
d

1
.0
5

0
.8
0

5
1
0
0

2
,3
9
8
,2
0
5

5
1
9
,5
8
9
,2
3
3

8
.1
7

0
.0
0
0
0
0

J
fl
at
1
0
0
-m

ed
1
.3
0

0
.4
0

5
1
0
0

7
,4
6
0

1
0
0

1
0
,7
2
9

1
.4
4

0
.0
0
0
0
0

J
fl
at
1
0
0
-h
ar
d

1
.3
0

0
.8
0

6
1
0
0

3
1
,8
1
2

1
0
0

2
9
,9
0
6

0
.9
4

0
.8
6
5
8
5

�
fl
at
2
0
0
-m

ed
1
.3
0

0
.4
0

5
1
0
0

8
3
,5
5
8

1
0
0

1
6
8
,0
3
0

2
.0
1

0
.0
0
0
0
0

J
fl
at
2
0
0
-h
ar
d

1
.3
0

0
.4
0

5
1
0
0

3
,3
9
7
,0
8
8

1
0
0

3
,8
3
7
,5
3
7

1
.1
3

0
.1
5
7
9
3

�
g
1
2
5
.1
7

1
.2
0

0
.0
5

5
9
7

4
,1
8
7
,7
5
0

1
1
9
,9
5
3
,8
6
7

4
.7
6

0
.0
0
0
0
0

J
g
2
5
0
.2
9

1
.1
5

0
.1
0

6
9
0

4
,6
2
2
,9
1
5

0
2
0
,0
0
0
,0
0
0

4
.3
3

0
.0
0
0
0
0

J
u
f1
0
0
-h
ar
d

1
.3
0

0
.8
0

5
1
0
0

4
,2
5
0

=
=

=
=

=

u
f2
5
0
-m

ed
1
.3
0

0
.4
0

6
1
0
0

7
,0
5
0

1
0
0

1
3
,5
8
4

1
.9
3

0
.0
0
0
0
0

J
u
f2
5
0
-h
ar
d

1
.3
0

0
.7
0

5
1
0
0

2
2
3
,5
9
3

1
0
0

2
5
4
,2
4
3

1
.1
4

0
.0
0
7
1
0

J
u
f4
0
0
-m

ed
1
.3
0

0
.2
0

5
1
0
0

6
1
,1
5
9

1
0
0

1
6
7
,7
8
5

2
.7
4

0
.0
0
0
0
0

J
u
f4
0
0
-h
ar
d

1
.3
0

0
.2
0

5
1
0
0

1
,4
4
6
,9
8
7

9
8

3
,9
0
1
,4
1
5

2
.7
0

0
.0
0
0
0
0

J

112 JOHN THORNTON



f8
0
0
-m

ed
1
.2
5

0
.1
0

5
1
0
0

2
6
3
,1
0
5

3
3

1
6
,6
6
5
,5
3
1

6
3
.3
4

0
.0
0
0
0
0

J
f8
0
0
-h
ar
d

1
.2
5

0
.3
0

5
1
0
0

1
,7
5
4
,0
1
7

1
7

1
8
,5
9
3
,5
9
1

1
0
.6
0

0
.0
0
0
0
0

J
f1
6
0
0
-m

ed
1
.2
5

0
.3
0

5
9
9

1
,3
0
3
,9
4
1

0
2
0
,0
0
0
,0
0
0

1
5
.3
4

0
.0
0
0
0
0

J
f1
6
0
0
-h
ar
d

1
.2
5

0
.3
0

5
9
4

7
,7
7
7
,9
8
0

0
2
0
,0
0
0
,0
0
0

2
.5
7

0
.0
0
0
0
0

J
ai
s1
0

1
.3
0

0
.9
0

4
1
0
0

1
8
,0
8
5

1
0
0

2
0
,3
3
9

1
.1
2

0
.0
0
3
8
4

J
ai
s1
2

1
.2
5

0
.9
5

4
1
0
0

1
2
3
,0
9
9

1
0
0

1
8
6
,4
0
2

1
.5
1

0
.0
0
0
0
0

J
lo
g
is
ti
cs
.c

1
.3
0

0
.9
0

5
1
0
0

8
,4
3
6

1
0
0

9
,3
9
9

1
.1
1

0
.0
0
0
8
8

J
lo
g
is
ti
cs
.d

1
.2
0

1
.0
0

4
1
0
0

2
1
,2
4
8

1
0
0

5
7
,1
5
1

2
.6
9

0
.0
0
0
0
0

J
p
ar
1
6
-m

ed
2
.0
0

0
.2
5

7
8
8

7
,7
2
0
,9
6
5

8
2

7
,5
2
1
,5
5
3

0
.9
7

0
.5
4
9
1
8

�
p
ar
1
6
-h
ar
d

1
.4
0

0
.9
0

4
8
6

9
,7
2
5
,4
9
5

7
8

9
,8
2
5
,1
3
8

1
.0
1

0
.1
2
2
9
6

�
b
in
3
0
-8
0

1
.3
0

0
.1
0

6
1
0
0

1
2
,2
9
9

1
0
0

2
3
,1
2
7

1
.8
8

0
.0
0
0
0
0

J
b
in
3
0
-4
0

1
.2
5

0
.5
0

6
1
0
0

1
9
,7
1
1

1
0
0

3
6
,8
2
6

1
.8
7

0
.0
0
0
0
0

J
b
in
5
0
-8
0

1
.2
0

0
.1
0

6
1
0
0

1
8
6
,5
5
2

1
0
0

1
,4
9
5
,0
9
7

8
.0
1

0
.0
0
0
0
0

J
b
in
5
0
-4
0

1
.2
5

0
.2
5

5
9
9

1
1
,5
6
2
,1
0
3

7
0

2
5
,6
0
7
,7
6
6

2
.2
1

0
.0
0
0
0
0

J

In
th
e
ta
b
le

P
sm

o
o
th
is
ab
b
re
v
ia
te
d
to

P
an
d
ro
w
s
w
it
h
F=
_
v
al
u
es

in
d
ic
at
e
th
e
d
ef
au
lt
an
d
tu
n
ed

se
tt
in
g
s
w
er
e
eq
u
al
.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 113



From the foregoing analysis we can conclude that each of the three main

SAPS parameters can produce significant differences in performance on at least

one of the test problems. However, this result must be qualified in several

respects. First, fine tuning parameters is unnecessary when comparing with

another algorithm, if a coarsely tuned version still dominates. As the subsequent

results show, SAPS does not clearly dominate PAWS, and so the fine tuning of

parameters can be justified. Second, while the individual parameters are sensitive

in isolation, this does not mean that one or two parameters could be fixed, and

the free parameter(s) adjusted to achieve optimal performance (this assumes that

different combinations of parameter settings could produce the same optimal

performance). The earlier study on RSAPS (Hutter et al., 2002) shows that

holding a and U constant and manipulating Psmooth is not as effective as

additionally allowing U to change. This indicates that at least two SAPS

parameters need to be manipulated to achieve acceptable performance.

If we further consider the actual effects of a , U and Psmooth, it seems reasonable

to assume that similar weighting behaviour could be achieved with combinations

of different settings, that is, a determines the amount of weight increase, U
determines the amount of decrease, and Psmooth determines how frequently a

decrease occurs. Hence we could expect a smaller increase and larger decrease

performed less frequently to behave similarly to a large increase and a smaller

decrease performed more frequently. In this case we would prefer the setting that

reduces weight more infrequently, as it would be more time efficient. But the

question remains as to how infrequently weight can be reduced without degrading

performance. Certainly we know performance will degrade eventually, as the limit

would be to never reduce weight, and the more infrequently we reduce weight the

more insensitive the search becomes to local conditions.

In summary, we conjecture there may be discoverable relationships between

a , U , and Psmooth that could simplify the parameter tuning process. It may also be

the case that a more fine grained tuning of one parameter could eliminate the

need to tune another. We leave these questions for future research. In practical

terms, the sensitivity of the SAPS parameters means we cannot be certain of

obtaining the best performance without searching an extensive range of settings.

While a particular parameter may not be sensitive on a particular problem, we

are unfortunately unable to know this in advance.

4.4.2. Tuning PAWS

Tuning PAWS presented a relatively simpler problem. Keeping Pflat constant at

15Q, we manipulated Maxinc from 5 to 100 in steps of 5, with 100 runs at each

setting (as with SAPS we reduced the number of runs for the more difficult

problems). We then graphed the mean flip performance against Maxinc and

decided on an optimum setting by visual inspection. If the performance still

appeared to be improving at Maxinc = 100, we tested PAWS with no weight

decrease (i.e., Maxinc = 1), and, if this proved better than Maxinc = 100, the 1

114 JOHN THORNTON



value was accepted. Otherwise we continued with a further analysis from 105 to

200 in steps of five (this secondary analysis only proved necessary for the ais12

problem). Given an optimum point from graphical analysis, a final fine grained

analysis was performed around this point, in the range of T5 in steps of T1. From
this the best value was selected and used in the remainder of the study. As an

example, the performance graph for PAWS on ais12 for the Maxinc range of 110
to 200 is shown in Figure 3b (with a trendline fitted). This gives a fairly typical

picture of the behaviour of Maxinc, showing the presence of an unambiguous

minimum flip value.

While Maxinc is sensitive to changes down to T1, especially for Maxinc < 20,

the tuning process is considerably simpler than for SAPS and contains less mar-

gin for error due to noise. This is because the single parameter allows for a simple

graphical analysis and hence the identification of trends that are independent of

noise. Conversely, tuning SAPS runs the risk of missing the best parameter

settings, even when averaging over 100 runs.

4.4.3. Tuning the Variant Algorithms

After completing the above exhaustive parameter tuning exercise, we used the

SAPS parameter settings to test the SAPS variants and the PAWS parameter

settings to test the PAWS variants, with two qualifications:

1. Changing from deterministic to probabilistic smoothing or vice versa (i.e.,

for SAPS+d, SAPS+a, SAPS+t, PAWS-d, and PAWS-a) requires a con-

version of the PAWS Maxinc and SAPS Psmooth parameters. This is

achieved by dividing either parameter into 100. For example, ifMaxinc =
5, this is converted to a Psmooth value of 100/5 = 20Q, that is, reducing

weight at every 5th local minimum is most closely approximated by a 20Q
chance of reducing weight at each local minimum. Similarly, Psmooth can

be converted to a Maxinc value using the same procedure, that is, 100/20 = 5.

2. Although SAPS is usually run with a fixed wp probability of 1Q and PAWS

is run with a fixed flat move probability of 15Q, it was not clear which

probability value to use when converting between the two random move

selection heuristics. We therefore ran versions of SAPS+r, SAPS+a, PAWS-r,

and PAWS-a using both settings and selected the best performing variant.

After these conversions, we tested all variants on the full problem set. The

results of a similar experiment (excluding SAPS+a, SAPS+t, and PAWS-a)

were informally described in (Thornton et al., 2004), where it was concluded

that no particular variant produced an improvement over the base versions. For

the current study, further parameter tuning was executed in the local neighbour-

hoods of the original conversions. From this we found that the a and U values

for SAPS are fairly robust, as was Psmooth for SAPS+m and SAPS+d. However,

our test showed that the Maxinc/Psmooth conversions did not necessarily produce

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 115



the best performance on all problems. Also, on several problems, the optimal

Maxinc settings for PAWS-m and PAWS-r differed slightly from the original

PAWS setting. Using these more refined settings we were able to produce

considerably better performance across the range of SAPS and PAWS

variants, as the following results show.

4.5. RESULTS

Tables IIYX divide the problem set results according to problem types, placing

the instances in ascending order of size and/or difficulty within each table. For

each problem we then report the performance of the original PAWS and SAPS

algorithms and their variants, as described in Section 3.1. All results have a 20

million flip cut-off, except bin50-40, which has a 50 million cut-off, and the

statistics refer to averages over 1,000 runs, except for those problems where at

least one algorithm has an average flip cost greater than one million, in which

case the average is over 100 runs.j

In all six tables, the Wilcoxon values give the probability that the null

hypothesis A Q B is true, where A is the distribution of flips or run-times that has

the smaller rankYsum value. We record P-values against distribution A and take

P < 0.05 to indicate that A is significantly less than B, marking such results with

F*_. The intra Wilcoxon column compares flips for the standard SAPS and

SAPS+a heuristics for SAPS, and the standard PAWS and PAWS-a heuristics for

PAWS. Hence the Wilcoxon intra column value of 0.3473f in the bw_large.a,

SAPS+a row of Table II indicates that we can reject the hypothesis that SAPS+a

has significantly better flip performance than SAPS on this problem (in all

Wilcoxon statistics an Ff_ refers to a comparison between flips and a Ft_ refers to
a comparison between run-times). Conversely, the intra column value of

*0.0283f in the bw_large.d, PAWS row of Table II indicates that we can accept

the hypothesis that PAWS has significantly better performance than PAWS-a on

this problem. Additionally, the Wilcoxon inter column compares the original

SAPS and PAWS heuristics in terms of both flips and time. Hence the Wilcoxon

inter column values of *0.0000f and *0.0000t in the bw_large.d, PAWS section

of Table II indicate that we can accept the hypothesis that the basic PAWS

heuristic has better flip and time performance than the basic SAPS heuristic on

this problem. The additional RTD analysis described in Section 4.3 is shown in

Table XI, where we present an overall comparison of the results.

Lastly, the table parameter column values for each variant are encoded using

a , U , s and n, where a and U have their usual SAPS interpretation, but s and n

j All experiments were performed on a Sun supercomputer with 8 � Sun Fire V880 servers,

each with 8 � UltraSPARC-III 900 MHz CPU and 8 GB memory per node.

116 JOHN THORNTON



have common definitions across both SAPS and PAWS variants, where s
represents the smoothing parameter, which has a probabilistic interpretation for

SAPS, SAPS+m, SAPS+r, PAWS-d, and PAWS-a and a deterministic interpre-

tation for all other variants (see Section 4.4), and n represents a noise parameter

that applies either as the probability of taking a pure random move for SAPS,

SAPS+m, SAPS+d, PAWS-r, and PAWS-a or as the probability of taking a

random flat move for all other variants.

In the following subsections we discuss the results for each of the six problem

domains.

4.5.1. Blocks World Results

For the smaller bw_large.a and b problems (in Table II), the SAPS variants

generally have the better flip performance. However, this advantage does not

carry over into the time domain, where PAWS is not significantly different from

SAPS on bw_large.a and dominates on the three other problems. PAWS further

dominates SAPS in terms of flips for bw_large.c and d. Hence, as problem size

and difficulty increase, the PAWS variants also improve relative to SAPS,

meaning PAWS has the overall advantage for this problem set.

In terms of individual variants, SAPS+a dominates the original SAPS, being

significantly better on problems b and d and slightly better on a and c. SAPS+a

also challenges PAWS on bw_large.b, having a better flip count and roughly

equal time performance. For the PAWS variants, there is a (nonsignificant)

indication that PAWS-a does better on the smaller a and b problems, but standard

PAWS becomes better on the larger problems and is significantly better on

bw_large.d.

4.5.2. Graph Colouring Results

As with the blocks world problems, SAPS starts well on the smaller graph

colouring problems, having significantly better flip and time performance on

the two flat-100 problems (see Table III). However, as problem size increases,

the relative performance of PAWS also improves, becoming significantly better

than SAPS in terms of flips and time on flat200-med and on the larger g125.17

and g250.29 problems (see Table IV) and roughly equal on flat200-hard.

The SAPS+a variant again looks better than standard SAPS, being

significantly better on flat100-med, flat-200-med, and g125.17 and verging on

significantly better for the flat100-hard and flat200-hard problems. However, the

situation is less clear for the largest g250.29 problem, where SAPS is

significantly better than SAPS+a but has poorer success rate (90Q versus
98Q). For the PAWS variants, there is little difference on the smaller flat100

problems, but for all larger problems PAWS becomes significantly better.

Considering the standard SAPS and PAWS algorithms, we can conclude

that PAWS has the better performance on this problem set, particularly as

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 117



T
ab

le
II
.

B
lo
ck
s
w
o
rl
d
p
la
n
n
in
g
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

b
w
_
la
rg
e.
a

S
A
P
S

a
1
.3
U
0
.8
s6
n1

1
0
0

0
.0
1

0
.0
1

2
,1
8
4

2
,8
2
4

*
0
.0
0
0
7
f

S
A
P
S
+
m

a
1
.3
U
0
.8
s6
n1

1
0
0

0
.0
1

0
.0
1

2
,2
3
6

2
,9
0
5

S
A
P
S
+
r

a
1
.3
U
0
.8
s6
n1

1
0
0

0
.0
1

0
.0
1

2
,1
6
8

2
,8
9
5

S
A
P
S
+
d

a
1
.3
U
0
.8
s1
6
n1

1
0
0

0
.0
1

0
.0
1

2
,1
5
5

2
,8
0
9

S
A
P
S
+
a

a
1
.3
U
0
.8
s1
6
n1

1
0
0

0
.0
1

0
.0
1

2
,0
8
9

2
,7
7
2

0
.3
4
7
3
f

S
A
P
S
+
t

a
1
.3
U
0
.8
s1
6
n1
5

1
0
0

0
.0
1

0
.0
2

2
,2
5
1

2
,8
8
9

P
A
W
S

s3
4
n1
5

1
0
0

0
.0
1

0
.0
1

2
,5
1
8

3
,2
3
5

0
.4
5
7
0
t

P
A
W
S
-m

s3
4
n1
5

1
0
0

0
.0
1

0
.0
1

2
,2
7
3

3
,0
0
3

P
A
W
S
-r

s3
4
n1
5

1
0
0

0
.0
1

0
.0
1

2
,4
0
3

3
,0
6
7

P
A
W
S
-d

s3
n1
5

1
0
0

0
.0
1

0
.0
1

2
,3
6
9

3
,1
6
9

P
A
W
S
-a

s3
n1

1
0
0

0
.0
1

0
.0
1

2
,4
5
3

3
,1
1
8

0
.2
0
7
5
f

b
w
_
la
rg
e.
b

S
A
P
S

a
1
.3
U
0
.8
s5
n1

1
0
0

0
.2
0

0
.2
6

3
4
,4
8
8

4
5
,3
3
5

0
.4
3
0
2
f

S
A
P
S
+
m

a
1
.3
U
0
.8
s5
n1

1
0
0

0
.2
0

0
.2
8

3
4
,5
8
4

4
8
,0
7
1

S
A
P
S
+
r

a
1
.3
U
0
.8
s5
n1

1
0
0

0
.1
7

0
.2
6

2
9
,7
0
1

4
5
,7
5
0

S
A
P
S
+
d

a
1
.3
U
0
.8
s3
0
n1

1
0
0

0
.1
5

0
.2
1

2
6
,9
1
0

3
9
,0
3
3

S
A
P
S
+
a

a
1
.3
U
0
.8
s3
0
n1

1
0
0

0
.1
6

0
.2
1

2
7
,5
9
1

3
7
,7
3
1

*
0
.0
0
0
0
f

S
A
P
S
+
t

a
1
.3
U
0
.8
s3
0
n1
5

1
0
0

0
.1
9

0
.2
7

2
6
,5
0
8

3
8
,5
2
4

P
A
W
S

s5
0
n1
5

1
0
0

0
.1
6

0
.2
1

3
3
,4
8
0

4
5
,5
0
1

*
0
.0
0
0
0
t

P
A
W
S
-m

s5
0
n1
5

1
0
0

0
.1
5

0
.2
0

3
0
,8
3
2

4
3
,4
1
8

P
A
W
S
-r

s5
0
n1
5

1
0
0

0
.1
6

0
.2
1

3
2
,9
7
7

4
4
,6
3
5

P
A
W
S
-d

s2
n1
5

1
0
0

0
.1
5

0
.2
1

3
2
,1
0
4

4
4
,4
5
8

P
A
W
S
-a

s2
n1

1
0
0

0
.1
5

0
.2
1

3
2
,1
3
3

4
4
,1
0
9

0
.2
4
0
2
f

118 JOHN THORNTON



b
w
_
la
rg
e.
c

S
A
P
S

a
1
.1
U
0
.6
s7
n1

1
0
0

1
7
.6
3

2
6
.4
5

1
,3
6
6
,3
1
9

2
,1
0
3
,3
5
2

S
A
P
S
+
m

a
1
.1
U
0
.6
s7
n1

1
0
0

1
8
.5
3

3
0
.9
6

1
,4
4
8
,9
2
4

2
,3
7
0
,6
0
0

S
A
P
S
+
r

a
1
.1
U
0
.6
s7
n1

1
0
0

2
1
.2
1

3
0
.0
2

1
,6
6
9
,1
1
4

2
,2
6
4
,9
8
6

S
A
P
S
+
d

a
1
.1
U
0
.6
s2
0
n1

1
0
0

1
3
.8
0

1
6
.6
8

1
,3
6
6
,0
8
3

1
,6
7
1
,3
2
3

S
A
P
S
+
a

a
1
.1
U
0
.6
s2
0
n1
5

1
0
0

1
2
.7
2

1
7
.2
0

1
,2
2
4
,8
6
0

1
,6
6
4
,8
2
2

0
.1
2
5
6
f

S
A
P
S
+
t

a
1
.1
U
0
.6
s2
0
n1
5

8
2

1
5
.0
0

2
9
.3
4

1
,4
7
1
,7
6
2

4
,6
6
5
,8
5
1

P
A
W
S

s5
n1
5

1
0
0

4
.7
4

6
.8
7

7
9
8
,3
8
9

1
,1
8
1
,0
3
2

0
.3
1
4
7
f

*
0
.0
0
0
1
f

P
A
W
S
-m

s5
n1
5

1
0
0

4
.6
4

6
.6
7

7
8
6
,3
4
4

1
,1
4
3
,0
1
4

*
0
.0
0
0
0
t

P
A
W
S
-r

s5
n1
5

1
0
0

5
.8
4

7
.4
0

9
5
7
,6
1
0

1
,2
4
7
,5
8
1

P
A
W
S
-d

s3
0
n1
5

1
0
0

7
.2
6

9
.0
4

1
,2
4
6
,3
4
2

1
,5
8
1
,4
1
7

P
A
W
S
-a

s3
0
n1

1
0
0

4
.4
1

6
.9
6

7
4
2
,6
6
9

1
,2
0
6
,0
9
9

b
w
_
la
rg
e.
d

S
A
P
S

a
1
.0
5
U
0
.8
s5
n1

1
0
0

2
9
.2
2

3
7
.8
7

1
,8
6
8
,7
3
3

2
,3
9
8
,2
0
5

S
A
P
S
+
m

a
1
.0
5
U
0
.8
s5
n1

1
0
0

2
5
.1
1

3
6
.6
4

1
,5
1
2
,0
7
9

2
,2
1
3
,0
5
5

S
A
P
S
+
r

a
1
.0
5
U
0
.8
s5
n1

1
0
0

3
0
.9
2

4
7
.2
7

1
,8
8
4
,3
2
7

2
,8
1
9
,9
2
0

S
A
P
S
+
d

a
1
.0
5
U
0
.8
s2
0
n1

1
0
0

2
1
.6
8

2
9
.0
0

1
,2
1
0
,1
1
4

1
,6
6
0
,6
4
0

S
A
P
S
+
a

a
1
.0
5
U
0
.8
s2
0
n1
5

1
0
0

2
0
.0
1

2
5
.5
3

1
,1
5
2
,1
4
6

1
,5
3
6
,3
2
2

*
0
.0
0
0
2
f

S
A
P
S
+
t

a
1
.0
5
U
0
.8
s2
0
n1
5

8
5

3
4
.0
3

4
8
.0
2

2
,5
7
5
,8
2
1

4
,9
4
9
,4
1
8

P
A
W
S

s4
n1
5

1
0
0

7
.0
7

1
0
.8
7

9
0
3
,9
6
2

1
,4
3
2
,7
8
0

*
0
.0
2
8
3
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s4
n1
5

1
0
0

7
.5
0

1
0
.1
3

1
,0
0
7
,7
4
4

1
,3
2
4
,6
5
0

*
0
.0
0
0
0
t

P
A
W
S
-r

s4
n1
5

1
0
0

8
.2
4

1
0
.4
5

1
,0
5
8
,4
0
3

1
,3
4
9
,5
9
9

P
A
W
S
-d

s3
5
n1
5

1
0
0

7
.7
2

1
2
.6
7

9
3
0
,4
6
2

1
,5
9
4
,5
9
9

P
A
W
S
-a

s3
5
n1
5

1
0
0

9
.6
5

1
5
.7
5

1
,1
7
5
,8
1
5

1
,9
5
6
,0
3
7

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 119



T
ab

le
II
I.

S
m
al
l
g
ra
p
h
co
lo
u
ri
n
g
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

fl
at
1
0
0
-m

ed
S
A
P
S

a
1
.3
U
0
.4
s5
n1

1
0
0

0
.0
1

0
.0
1

5
,4
1
5

7
,4
6
0

*
0
.0
0
0
4
f

S
A
P
S
+
m

a
1
.3
U
0
.4
s5
n1

1
0
0

0
.0
1

0
.0
1

5
,1
5
6

7
,3
4
0

*
0
.0
2
0
9
t

S
A
P
S
+
r

a
1
.3
U
0
.4
s5
n1

1
0
0

0
.0
1

0
.0
1

5
,3
1
4

7
,5
3
2

S
A
P
S
+
d

a
1
.3
U
0
.4
s2
0
n1

1
0
0

0
.0
1

0
.0
1

4
,6
2
3

6
,3
8
1

S
A
P
S
+
a

a
1
.3
U
0
.4
s2
0
n1

1
0
0

0
.0
1

0
.0
1

4
,6
8
4

6
,5
2
7

*
0
.0
0
5
6
f

S
A
P
S
+
t

a
1
.3
U
0
.4
s2
0
n1
5

1
0
0

0
.0
1

0
.0
2

5
,1
8
2

7
,4
2
5

P
A
W
S

s1
3
n1
5

1
0
0

0
.0
1

0
.0
1

6
,4
0
2

8
,6
2
8

0
.4
6
8
3
f

P
A
W
S
-m

s1
0
n1
5

1
0
0

0
.0
1

0
.0
1

5
,7
4
7

7
,8
8
3

P
A
W
S
-r

s1
3
n1
5

1
0
0

0
.0
1

0
.0
1

6
,0
7
8

8
,1
1
7

P
A
W
S
-d

s1
1
n1
5

1
0
0

0
.0
1

0
.0
2

6
,4
0
9

9
,0
2
4

P
A
W
S
-a

s1
1
n1

1
0
0

0
.0
1

0
.0
2

6
,2
0
7

8
,6
7
6

fl
at
1
0
0
-h
ar
d

S
A
P
S

a
1
.3
U
0
.8
s6
n1

1
0
0

0
.0
4

0
.0
6

2
1
,9
6
5

3
1
,8
1
2

*
0
.0
0
1
0
f

S
A
P
S
+
m

a
1
.3
U
0
.8
s6
n1

1
0
0

0
.0
4

0
.0
6

2
0
,9
3
8

3
0
,2
8
8

*
0
.0
1
6
4
t

S
A
P
S
+
r

a
1
.3
U
0
.8
s6
n1

1
0
0

0
.0
4

0
.0
5

2
2
,4
2
2

3
0
,6
6
9

S
A
P
S
+
d

a
1
.3
U
0
.8
s1
8
n1

1
0
0

0
.0
4

0
.0
5

2
1
,4
4
9

3
0
,0
2
6

S
A
P
S
+
a

a
1
.3
U
0
.8
s1
8
n1

1
0
0

0
.0
4

0
.0
5

2
0
,8
8
8

2
9
,3
2
1

0
.0
6
4
9
f

S
A
P
S
+
t

a
1
.3
U
0
.8
s1
8
n1
5

1
0
0

0
.0
5

0
.0
8

1
9
,8
2
8

2
9
,9
5
2

P
A
W
S

s4
6
n1
5

1
0
0

0
.0
4

0
.0
6

2
6
,0
6
5

3
6
,1
7
8

0
.2
3
9
8
f

P
A
W
S
-m

s4
6
n1
5

1
0
0

0
.0
4

0
.0
6

2
5
,6
2
6

3
7
,8
8
2

P
A
W
S
-r

s4
6
n1
5

1
0
0

0
.0
5

0
.0
7

2
7
,1
9
1

3
9
,8
2
5

P
A
W
S
-d

s2
n1
5

1
0
0

0
.0
4

0
.0
6

2
5
,0
3
9

3
5
,9
9
3

P
A
W
S
-a

s2
n1

1
0
0

0
.0
4

0
.0
6

2
7
,0
4
6

3
7
,8
8
0

120 JOHN THORNTON



fl
at
2
0
0
-m

ed
S
A
P
S

a
1
.3
U
0
.4
s5
n1

1
0
0

0
.1
2

0
.1
7

5
7
,4
1
1

8
3
,5
5
8

S
A
P
S
+
m

a
1
.3
U
0
.4
s5
n1

1
0
0

0
.1
2

0
.1
7

5
5
,0
3
5

7
9
,0
7
3

S
A
P
S
+
r

a
1
.3
U
0
.4
s5
n1

1
0
0

0
.1
2

0
.1
7

5
9
,2
4
9

8
2
,4
1
4

S
A
P
S
+
d

a
1
.3
U
0
.4
s2
0
n1

1
0
0

0
.0
9

0
.1
3

4
3
,7
2
5

6
1
,8
7
8

S
A
P
S
+
a

a
1
.3
U
0
.4
s2
0
n1

1
0
0

0
.0
9

0
.1
2

4
0
,9
0
0

5
7
,9
4
6

*
0
.0
0
0
0
f

S
A
P
S
+
t

a
1
.3
U
0
.4
s2
0
n1
5

1
0
0

0
.1
6

0
.2
3

4
8
,8
5
0

7
1
,1
9
0

P
A
W
S

s1
0
n1
5

1
0
0

0
.1
0

0
.1
3

4
8
,9
9
0

6
7
,7
8
1

*
0
.0
0
0
0
f

*
0
.0
0
0
2
f

P
A
W
S
-m

s9
n1
5

1
0
0

0
.1
0

0
.1
3

5
3
,5
2
9

7
1
,5
5
3

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
1
n1
5

1
0
0

0
.1
1

0
.1
5

5
6
,9
8
3

7
8
,0
9
0

P
A
W
S
-d

s1
3
n1
5

1
0
0

0
.1
1

0
.1
6

5
9
,7
3
1

8
0
,0
2
2

P
A
W
S
-a

s1
3
n1

1
0
0

0
.1
2

0
.1
7

6
4
,8
1
8

8
8
,5
9
3

fl
at
2
0
0
-h
ar
d

S
A
P
S

a
1
.3
U
0
.4
s5
n1

1
0
0

4
.8
6

6
.3
8

3
,1
7
3
,1
8
8

3
,3
9
7
,0
8
8

S
A
P
S
+
m

a
1
.3
U
0
.4
s5
n1

1
0
0

3
.7
5

5
.6
4

1
,8
0
1
,9
8
1

2
,7
1
4
,4
8
3

S
A
P
S
+
r

a
1
.3
U
0
.4
s5
n1

1
0
0

3
.6
3

5
.1
1

1
,7
9
1
,6
8
6

2
,5
3
2
,6
1
6

S
A
P
S
+
d

a
1
.3
U
0
.4
s2
0
n1

1
0
0

3
.0
2

4
.5
0

1
,5
2
6
,5
2
4

2
,2
8
3
,5
9
8

S
A
P
S
+
a

a
1
.3
U
0
.4
s2
0
n1

1
0
0

3
.3
4

4
.9
5

1
,6
3
4
,4
7
2

2
,4
1
7
,2
1
1

0
.0
5
2
5
f

S
A
P
S
+
t

a
1
.3
U
0
.4
s2
0
n1
5

9
3

5
.8
3

9
.7
6

1
,9
4
9
,8
2
6

3
,4
4
5
,6
0
6

P
A
W
S

s7
4
n1
5

9
9

4
.3
4

5
.9
0

2
,3
5
4
,9
4
4

3
,2
2
4
,4
3
2

*
0
.0
0
0
4
f

0
.3
8
4
2
f

P
A
W
S
-m

s7
4
n1
5

9
9

4
.3
4

6
.6
8

2
,4
1
4
,0
3
1

3
,7
4
8
,2
0
7

0
.2
1
2
1
t

P
A
W
S
-r

s7
4
n1
5

1
0
0

5
.5
8

6
.7
0

3
,0
0
9
,1
7
7

3
,6
2
1
,4
4
7

P
A
W
S
-d

s2
n1
5

9
8

6
.5
2

9
.4
5

3
,3
7
6
,8
5
2

5
,0
0
1
,2
8
0

P
A
W
S
-a

s2
n1
5

9
9

7
.8
3

9
.9
3

4
,2
4
5
,3
5
0

5
,4
2
5
,6
4
1

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 121



T
ab

le
IV
.

L
ar
g
e
g
ra
p
h
co
lo
u
ri
n
g
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

g
1
2
5
.1
7

S
A
P
S

a
1
.2
U
0
.0
5
s5
n1

9
7

5
5
.5
9

8
1
.6
5

2
,7
7
2
,0
1
7

4
,1
8
7
,7
5
0

S
A
P
S
+
m

a
1
.2
U
0
.0
5
s5
n1

9
9

5
9
.8
6

8
6
.3
5

2
,9
4
0
,1
8
5

4
,2
5
3
,8
0
6

S
A
P
S
+
r

a
1
.2
U
0
.0
5
s5
n1

9
9

5
4
.5
9

8
1
.1
0

2
,6
8
3
,6
2
4

3
,9
9
8
,6
8
9

S
A
P
S
+
d

a
1
.2
U
0
.0
5
s2
5
n1

8
9

5
5
.8
5

1
0
4
.5
5

2
,5
6
4
,0
3
8

5
,4
5
7
,1
9
8

S
A
P
S
+
a

a
1
.2
U
0
.0
5
s2
5
n1
5

1
0
0

3
5
.1
0

5
2
.3
5

1
,8
4
5
,6
2
7

2
,6
4
1
,4
1
3

*
0
.0
1
0
4
f

S
A
P
S
+
t

a
1
.2
U
0
.0
5
s2
5
n1
5

7
3

5
5
.8
0

1
1
1
.6
6

2
,6
9
6
,4
4
0

7
,2
5
9
,5
6
9

P
A
W
S

s4
n
1
5

1
0
0

7
.9
1

1
0
.8
9

5
9
6
,4
4
7

8
4
1
,0
6
3

*
0
.0
2
4
5
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s4
n
1
5

1
0
0

7
.6
8

9
.1
7

5
4
2
,3
5
5

6
6
8
,9
7
2

*
0
.0
0
0
0
t

P
A
W
S
-r

s5
n
1
5

1
0
0

1
1
.9
3

1
5
.2
3

8
2
1
,8
4
9

1
,0
5
7
,9
7
8

P
A
W
S
-d

s4
0
n1
5

1
0
0

8
.7
6

1
3
.2
7

6
4
4
,0
2
7

9
8
6
,3
5
4

P
A
W
S
-a

s4
0
n1
5

1
0
0

1
1
.8
6

1
7
.1
5

8
4
9
,9
8
6

1
,2
3
5
,6
4
3

g
2
5
0
.2
9

S
A
P
S

a
1
.1
5
U
0
.1
s6
n1

9
0

1
0
0
.1
4

2
1
9
.9
2

5
6
3
,1
5
2

4
,6
2
2
,9
1
5

*
0
.0
0
0
0
f

S
A
P
S
+
m

a
1
.1
5
U
0
.1
s6
n1

9
2

1
0
2
.7
0

2
0
1
.8
6

5
9
5
,0
9
8

3
,8
7
6
,0
3
5

S
A
P
S
+
r

a
1
.1
5
U
0
.1
s6
n1

9
8

9
2
.7
1

1
6
6
.7
5

5
7
6
,1
2
2

1
,5
5
4
,8
1
1

S
A
P
S
+
d

a
1
.1
5
U
0
.1
s3
0
n1
5

9
9

1
0
7
.1
5

1
8
2
.1
7

8
4
5
,3
7
4

1
,7
2
7
,0
0
7

S
A
P
S
+
a

a
1
.1
5
U
0
.1
s3
3
n1
5

9
8

1
7
0
.0
4

2
8
9
.6
8

1
,4
7
7
,5
5
4

3
,1
2
4
,1
9
0

S
A
P
S
+
t

a
1
.1
5
U
0
.1
s3
3
n1
5

8
6

2
8
5
.4
7

4
2
9
.9
4

2
,6
6
1
,0
2
7

5
,3
1
3
,5
5
3

P
A
W
S

s4
n
1
5

1
0
0

1
9
.7
3

2
1
.8
9

2
7
5
,1
8
8

3
1
5
,9
3
7

*
0
.0
0
0
0
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s4
n
1
5

1
0
0

2
0
.3
3

2
3
.9
2

2
5
2
,2
4
3

3
0
2
,9
4
2

*
0
.0
0
0
0
t

P
A
W
S
-r

s5
n
1
5

1
0
0

3
4
.2
2

4
5
.4
3

3
4
8
,7
9
6

4
8
3
,9
7
8

P
A
W
S
-d

s3
6
n1
5

1
0
0

2
9
.6
6

3
8
.1
7

3
6
4
,0
2
4

4
4
4
,3
9
4

P
A
W
S
-a

s3
6
n1

1
0
0

4
7
.2
2

6
0
.4
3

5
0
2
,6
6
2

6
3
3
,4
0
2

122 JOHN THORNTON



problem size grows. However, if we include consideration of the SAPS variants,

then SAPS further dominates on both flat200 problems, at least in terms of flips.

This is examined in more detail when we look at the overall results in Table XI.

4.5.3. Small and Medium Random 3-SAT Results

Repeating the blocks world and graph colouring pattern, SAPS begins well on

the smaller problems, with significantly better flip and time performance on

uf250-hard and significantly better flip performance uf100-hard, but is overtaken

by PAWS on uf250-med and both larger uf400 problems (see Tables V and VI).

Variant performance also follows the previous results, with PAWS consis-

tently outperforming PAWS-a, and SAPS+a outperforming SAPS on all

problems except uf100-hard. SAPS+a further dominates PAWS in terms of flips

of uf400-hard (see Table VI), while achieving similar time performance (see

Table XI for more details).

4.5.4. Large Random 3-SAT Results

These problems continue the 3-SAT results from Tables V and VI and show the

dominance of PAWS growing as problem size increases, with significantly better

performance compared to all SAPS variants for all problems in terms of both

flips and time (see Table VII).

PAWS remains dominant over PAWS-a, but PAWS-d also performs well on

the three larger and more difficult problems. More interesting, the previous

dominance of SAPS+a over SAPS breaks down, with no significant difference on

any problem except f1600-med where SAPS dominates.

4.5.5. Structured DIMACS Results

These less related problems show PAWS doing significantly better on the par16

and logistics instances but with SAPS pulling ahead on flip count for the ais

problems (see Tables VIII and IX). However, as the ais problem difficulty

increases, there are signs that PAWS scales better, particularly in terms of time

performance.

SAPS+a returns to its position of relative dominance over SAPS, although it

achieves a significant difference only on logistics.c and ais12. PAWS also

continues to dominate or roughly equal the performance of PAWS-a and its other

variants.

4.5.6. Random CSP Results

Table X shows the results for the random binary CSPs. These problems present a

mixed picture, with SAPS showing better flip but equal time performance on

bin30-40, and PAWS showing significantly better time and flip performance on

bin30-80. For the larger problems, and unlike the other problem domains, SAPS

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 123



T
ab

le
V
.

S
m
al
l
ra
n
d
o
m

3
-S
A
T
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

u
f1
0
0
-h
ar
d

S
A
P
S

a
1
.3
U
0
.8
s5
n1

1
0
0

0
.0
1

0
.0
1

2
,8
5
7

4
,2
5
0

0
.4
7
2
6
f

*
0
.0
4
4
4
f

S
A
P
S
+
m

a
1
.3
U
0
.8
s5
n1

1
0
0

0
.0
1

0
.0
1

3
,0
4
1

4
,3
4
4

*
0
.2
4
6
0
t

S
A
P
S
+
r

a
1
.3
U
0
.8
s5
n1

1
0
0

0
.0
1

0
.0
1

2
,9
2
4

4
,1
2
0

S
A
P
S
+
d

a
1
.3
U
0
.8
s2
0
n1

1
0
0

0
.0
1

0
.0
1

2
,8
3
3

4
,0
9
5

S
A
P
S
+
a

a
1
.3
U
0
.8
s2
0
n1

1
0
0

0
.0
1

0
.0
1

2
,9
3
6

4
,3
3
0

S
A
P
S
+
t

a
1
.3
U
0
.8
s2
0
n1
5

1
0
0

0
.0
1

0
.0
1

3
,2
2
2

4
,4
5
5

P
A
W
S

s4
0
n1
5

1
0
0

0
.0
1

0
.0
1

3
,2
8
2

4
,5
7
9

*
0
.0
2
8
0
f

P
A
W
S
-m

s4
0
n1
5

1
0
0

0
.0
1

0
.0
1

3
,1
2
4

4
,6
4
1

P
A
W
S
-r

s4
0
n1
5

1
0
0

0
.0
1

0
.0
1

3
,3
6
8

5
,0
1
7

P
A
W
S
-d

s3
n1
5

1
0
0

0
.0
1

0
.0
1

3
,3
7
0

4
,6
5
0

P
A
W
S
-a

s3
n1

1
0
0

0
.0
1

0
.0
1

3
,6
1
4

4
,8
0
9

u
f2
5
0
-m

ed
S
A
P
S

a
1
.3
U
0
.4
s6
n1

1
0
0

0
.0
1

0
.0
2

4
,8
9
5

7
,0
5
0

S
A
P
S
+
m

a
1
.3
U
0
.4
s6
n1

1
0
0

0
.0
1

0
.0
2

4
,7
9
9

6
,9
3
9

S
A
P
S
+
r

a
1
.3
U
0
.4
s6
n1

1
0
0

0
.0
1

0
.0
2

4
,6
2
8

6
,3
5
3

S
A
P
S
+
d

a
1
.3
U
0
.4
s1
9
n1

1
0
0

0
.0
1

0
.0
1

4
,2
8
2

5
,9
7
2

S
A
P
S
+
a

a
1
.3
U
0
.4
s1
9
n1

1
0
0

0
.0
1

0
.0
2

4
,5
1
9

6
,4
4
2

0
.0
5
0
3
f

S
A
P
S
+
t

a
1
.3
U
0
.4
s1
9
n1
5

1
0
0

0
.0
2

0
.0
2

4
,6
4
7

6
,1
9
7

P
A
W
S

s1
1
n1
5

1
0
0

0
.0
1

0
.0
1

3
,7
9
5

5
,0
4
0

*
0
.0
0
0
0
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s1
1
n1
5

1
0
0

0
.0
1

0
.0
1

3
,9
5
4

5
,3
5
6

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
1
n1
5

1
0
0

0
.0
1

0
.0
1

3
,7
3
3

5
,1
8
3

P
A
W
S
-d

s1
2
n1
5

1
0
0

0
.0
1

0
.0
1

4
,1
3
5

5
,7
0
5

P
A
W
S
-a

s1
2
n1

1
0
0

0
.0
1

0
.0
1

4
,3
5
8

5
,9
9
3

124 JOHN THORNTON



u
f2
5
0
-h
ar
d

S
A
P
S

a
1
.3
U
0
.7
s5
n1

1
0
0

0
.4
1

0
.5
6

1
6
0
,7
1
0

2
2
3
,5
9
3

*
0
.0
0
0
0
f

S
A
P
S
+
m

a
1
.3
U
0
.7
s5
n1

1
0
0

0
.3
9

0
.5
8

1
4
9
,1
4
9

2
2
3
,7
9
4

*
0
.0
0
0
0
t

S
A
P
S
+
r

a
1
.3
U
0
.7
s5
n1

1
0
0

0
.3
9

0
.5
5

1
5
6
,8
0
2

2
2
0
,1
6
1

S
A
P
S
+
d

a
1
.3
U
0
.7
s2
0
n1

1
0
0

0
.3
4

0
.5
3

1
4
0
,1
6
6

2
1
5
,0
8
7

S
A
P
S
+
a

a
1
.3
U
0
.7
s2
0
n1

1
0
0

0
.3
6

0
.5
2

1
4
0
,6
9
5

2
0
6
,0
2
3

*
0
.0
4
1
2
f

S
A
P
S
+
t

a
1
.3
U
0
.7
s2
0
n1
5

1
0
0

0
.5
3

0
.7
0

1
5
2
,3
2
2

2
0
2
,5
4
0

P
A
W
S

s1
8
n1
5

1
0
0

0
.5
2

0
.7
9

2
1
3
,3
9
3

3
2
0
,2
7
3

*
0
.0
0
0
8
f

P
A
W
S
-m

s1
7
n1
5

1
0
0

0
.6
3

0
.9
4

2
6
2
,1
4
7

3
9
4
,1
9
9

P
A
W
S
-r

s1
8
n1
5

1
0
0

0
.5
6

0
.8
3

2
2
9
,1
8
4

3
4
2
,3
8
3

P
A
W
S
-d

s7
n1
5

1
0
0

0
.5
5

0
.7
8

2
2
2
,5
6
3

3
1
6
,9
5
4

P
A
W
S
-a

s7
n1

1
0
0

0
.6
4

0
.9
1

2
6
5
,2
5
9

3
7
5
,9
1
7

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 125



T
ab

le
V
I.

M
ed
iu
m

ra
n
d
o
m

3
-S
A
T
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

u
f4
0
0
-m

ed
S
A
P
S

a
1
.3
U
0
.2
s5
n1

1
0
0

0
.1
2

0
.1
7

4
2
,5
1
4

6
1
,1
5
9

S
A
P
S
+
m

a
1
.3
U
0
.2
s5
n1

1
0
0

0
.1
2

0
.1
7

4
1
,7
9
9

5
9
,4
8
3

S
A
P
S
+
r

a
1
.3
U
0
.2
s5
n1

1
0
0

0
.1
3

0
.1
7

4
5
,7
2
1

6
1
,9
9
7

S
A
P
S
+
d

a
1
.3
U
0
.2
s2
0
n1

1
0
0

0
.0
9

0
.1
4

3
3
,4
2
0

5
0
,4
5
2

S
A
P
S
+
a

a
1
.3
U
0
.2
s2
0
n1
5

1
0
0

0
.0
9

0
.1
3

3
1
,9
3
8

4
7
,7
0
1

*
0
.0
0
0
0
f

S
A
P
S
+
t

a
1
.3
U
0
.2
s2
0
n1
5

1
0
0

0
.1
3

0
.1
9

3
3
,4
2
5

4
8
,8
5
6

P
A
W
S

s9
n1
5

1
0
0

0
.0
8

0
.1
0

2
8
,6
0
1

3
8
,3
6
3

*
0
.0
0
0
0
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s9
n1
5

1
0
0

0
.0
7

0
.1
0

2
7
,9
4
5

3
9
,6
6
0

*
0
.0
0
0
0
t

P
A
W
S
-r

s9
n1
5

1
0
0

0
.0
8

0
.1
1

2
9
,0
2
7

4
2
,3
5
9

P
A
W
S
-d

s1
2
n1
5

1
0
0

0
.0
9

0
.1
2

3
2
,7
6
0

4
4
,7
2
9

P
A
W
S
-a

s1
2
n1

1
0
0

0
.0
9

0
.1
3

3
5
,2
7
7

4
9
,8
6
5

u
f4
0
0
-h
ar
d

S
A
P
S

a
1
.3
U
0
.2
s5
n1

1
0
0

2
.0
6

4
.0
1

7
4
4
,5
9
2

1
,4
4
6
,9
8
7

S
A
P
S
+
m

a
1
.3
U
0
.2
s5
n1

1
0
0

2
.9
2

4
.1
0

1
0
2
,8
2
3
1

1
,4
4
1
,8
7
6

S
A
P
S
+
r

a
1
.3
U
0
.2
s5
n1

1
0
0

2
.1
5

3
.3
3

7
7
9
,6
3
8

1
,2
0
7
,0
2
9

S
A
P
S
+
d

a
1
.3
U
0
.2
s2
0
n1

1
0
0

1
.4
6

2
.1
4

5
4
9
,5
4
7

8
0
4
,4
6
3

S
A
P
S
+
a

a
1
.3
U
0
.2
s2
0
n1
5

1
0
0

1
.3
1

1
.9
8

4
7
9
,0
8
8

7
2
6
,1
7
3

*
0
.0
0
0
1
f

S
A
P
S
+
t

a
1
.3
U
0
.2
s2
0
n1
5

9
6

2
.0
9

5
.1
3

5
5
5
,7
6
4

1
,4
9
6
,3
0
9

P
A
W
S

s8
n1
5

1
0
0

1
.7
1

2
.2
8

6
9
9
,8
9
2

9
2
9
,7
9
1

*
0
.0
0
3
6
f

*
0
.0
1
7
8
f

P
A
W
S
-m

s8
n1
5

1
0
0

1
.7
6

2
.4
8

7
0
5
,8
9
3

1
,0
0
0
,9
6
2

*
0
.0
0
2
6
f

P
A
W
S
-r

s8
n1
5

1
0
0

2
.0
8

2
.7
6

8
5
7
,4
0
9

1
,1
5
4
,5
8
0

P
A
W
S
-d

s1
7
n1
5

1
0
0

2
.0
8

2
.5
5

8
3
4
,3
6
9

1
,0
1
7
,8
5
9

P
A
W
S
-a

s1
7
n1

1
0
0

2
.8
3

3
.8
8

1
,1
1
6
,1
1
4

1
,5
3
7
,4
6
5

126 JOHN THORNTON



and PAWS show roughly equivalent performance, with SAPS having an edge in

terms of flips for bin50-40 and PAWS being significantly better in terms of time

on bin50-80.

As with the large 3-SAT problems, the SAPS+a variant no longer clearly

dominates SAPS, showing similar performance on bin50-40, slightly better

performance on bin30-40, significantly better performance on bin30-80, but

significantly worse performance on bin50-80. PAWS has roughly equivalent

performance to PAWS-a, with PAWS dominating on the smaller bin30 problems,

and PAWS-a matching PAWS on bin50-80 and dominating on bin50-40.

5. Analysis

Table XI gives an overall comparison of the results from Tables IIYX, identifying
the best variant for each algorithm on each problem, and giving a Wilcoxon and

RTD analysis of the comparative time performance of these best variants. As

discussed in Section 4.3, one variant is considered significantly better than

another only if the Wilcoxon rank sum test is significant and it has a dominating

RTD.

Table XI also provides statistics on the relative average lengths of list L for

SAPS, SAPS+t, and PAWS and a comparison of the relative SAPS and PAWS

flip rates. As the flip rates and list lengths remained stable across problem

variants, we only report the statistics for the base versions of SAPS and PAWS

(with the exception of SAPS+t list lengths, which were affected by the threshold

heuristic). We also show the best Satz or zChaff solution time for each problem

in seconds (as discussed in Section 4.2).

As there are considerable differences between the average flip rates for SAPS

and PAWS on nearly all problem instances, in the following analysis we limit the

comparison between SAPS and PAWS to their relative run-time distributions.

However, as flip rates are fairly stable between variants of the same algorithm

class, we generally consider flip distributions when comparing particular variants.

5.1. PAWS VERSUS SAPS

The first striking feature of Table XI is the dominance of the PAWS variants on

the overall problem set. Of the 29 problem instances, PAWS is significantly

better on 17 instances, SAPS is significantly better three instances, with no

significant difference on the remaining nine instances. For the 17 instances on

which PAWS is classed as better, in 13 cases the RTDs are clearly dominant, and

in four cases there is some crossing at a solution probability of less than 10Q
(marked with a - in Table XI). To give an idea of these distributions, Figure 6

shows two of the RTDs that cross at less than 10Q, Figure 5a shows a clearly

dominant RTD, and Figure 5b shows clearly crossing distributions.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 127



T
ab

le
V
II
.

L
ar
g
e
ra
n
d
o
m

3
-S
A
T
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

f8
0
0
-m

ed
S
A
P
S

a
1
.2
5
U
0
.1
s5
n1

1
0
0

0
.5
9

0
.9
1

1
6
9
,5
6
2

2
6
3
,1
0
5

0
.3
3
5
8
f

S
A
P
S
+
m

a
1
.2
5
U
0
.1
s5
n1

1
0
0

0
.7
4

0
.9
6

2
0
7
,7
6
0

2
7
0
,9
7
6

S
A
P
S
+
r

a
1
.2
5
U
0
.1
s5
n1

1
0
0

0
.7
6

0
.9
5

2
2
1
,1
2
7

2
7
2
,1
1
2

S
A
P
S
+
d

a
1
.2
5
U
0
.1
s3
0
n1
5

1
0
0

0
.5
4

1
.0
2

1
6
0
,0
8
6

3
0
7
,2
9
3

S
A
P
S
+
a

a
1
.2
5
U
0
.1
s3
0
n1
5

1
0
0

0
.7
0

0
.9
9

2
1
3
,2
0
0

2
8
4
,1
7
2

S
A
P
S
+
t

a
1
.2
5
U
0
.1
s3
0
n1
5

1
0
0

1
.1
1

1
.3
9

2
2
8
,0
2
3

2
8
2
,9
3
8

P
A
W
S

s9
n1
5

1
0
0

0
.2
6

0
.3
6

8
2
,3
9
2

1
1
5
,4
5
1

*
0
.0
0
0
7
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s9
n1
5

1
0
0

0
.3
3

0
.4
3

1
0
2
,6
6
7

1
3
1
,1
8
3

*
0
.0
0
0
0
t

P
A
W
S
-r

s9
n1
5

1
0
0

0
.2
9

0
.4
9

9
1
,6
9
3

1
7
2
,5
2
1

P
A
W
S
-d

s1
6
n1
5

1
0
0

0
.2
9

0
.4
5

9
5
,5
0
9

1
4
5
,2
8
9

P
A
W
S
-a

s1
6
n1

1
0
0

0
.4
2

0
.5
4

1
2
9
,1
8
4

1
7
1
,5
4
9

f8
0
0
-h
ar
d

S
A
P
S

a
1
.2
5
U
0
.3
s5
n1

1
0
0

4
.8
8

6
.1
2

1
,4
1
4
,6
2
1

1
,7
5
4
,0
1
7

0
.2
0
3
4
f

S
A
P
S
+
m

a
1
.2
5
U
0
.3
s5
n1

1
0
0

5
.3
5

6
.4
5

1
,4
9
4
,5
3
8

1
,8
0
4
,3
7
7

S
A
P
S
+
r

a
1
.2
5
U
0
.3
s5
n1

1
0
0

3
.9
2

5
.5
4

1
,1
1
3
,5
7
8

1
,5
7
6
,3
6
6

S
A
P
S
+
d

a
1
.2
5
U
0
.3
s3
0
n1

1
0
0

5
.9
1

7
.5
0

1
,7
3
9
,7
3
7

2
,1
8
4
,1
8
6

S
A
P
S
+
a

a
1
.2
5
U
0
.3
s3
0
n1

1
0
0

5
.4
9

7
.2
5

1
,5
5
7
,7
2
3

2
,0
3
9
,9
5
0

S
A
P
S
+
t

a
1
.2
5
U
0
.3
s3
0
n1
5

9
9

8
.1
4

1
1
.1
6

1
,5
4
5
,9
5
9

2
,1
3
5
,7
7
9

P
A
W
S

s1
0
n1
5

1
0
0

2
.5
8

3
.1
8

8
9
7
,6
9
6

1
,0
8
7
,0
7
6

0
.2
4
4
2
f

*
0
.0
0
1
1
f

P
A
W
S
-m

s1
0
n1
5

1
0
0

3
.0
4

4
.3
6

9
1
6
,2
9
2

1
,3
3
4
,8
9
7

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
0
n1
5

1
0
0

3
.5
3

4
.4
0

1
,1
9
9
,6
3
6

1
,6
0
7
,2
9
7

P
A
W
S
-d

s1
4
n1
5

1
0
0

2
.2
7

3
.0
9

7
5
3
,3
4
5

1
,0
3
5
,7
6
2

P
A
W
S
-a

s1
4
n1

1
0
0

2
.8
0

4
.1
1

8
6
7
,3
4
0

1
,2
7
7
,5
8
6

128 JOHN THORNTON



f1
6
0
0
-m

ed
S
A
P
S

a
1
.2
5
U
0
.3
s5
n1

9
9

3
.0
6

5
.9
4

6
9
3
,3
8
5

1
,3
0
3
,9
4
1

*
0
.0
2
7
9
f

S
A
P
S
+
m

a
1
.2
5
U
0
.3
s5
n1

1
0
0

2
.5
8

4
.9
6

5
3
8
,4
0
7

1
,0
3
3
,4
7
8

S
A
P
S
+
r

a
1
.2
5
U
0
.3
s5
n1

1
0
0

3
.3
0

5
.1
2

7
1
5
,1
5
2

1
,0
9
8
,8
1
8

S
A
P
S
+
d

a
1
.2
5
U
0
.3
s3
0
n
1
5

9
9

4
.8
0

8
.1
1

1
,0
8
6
,7
5
8

1
,9
2
0
,6
4
1

S
A
P
S
+
a

a
1
.2
5
U
0
.3
s3
0
n
1
5

1
0
0

4
.4
9

8
.0
7

1
,0
3
6
,5
2
9

1
,8
1
0
,5
6
6

S
A
P
S
+
t

a
1
.2
5
U
0
.3
s3
0
n
1
5

9
2

5
.6
4

1
6
.7
0

8
9
6
,6
3
1

2
,7
4
2
,3
9
3

P
A
W
S

s1
0
n1
5

1
0
0

0
.9
8

1
.7
4

2
8
4
,5
9
1

5
,4
8
3
,2
2

*
0
.0
0
0
6
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s1
0
n1
5

1
0
0

2
.0
2

2
.2
9

4
9
9
,6
4
2

5
7
6
,6
1
8

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
1
n1
5

1
0
0

2
.0
4

2
.6
7

5
2
1
,9
2
0

7
6
2
,2
5
5

P
A
W
S
-d

s1
4
n1
5

1
0
0

1
.1
8

1
.7
6

3
2
7
,2
3
5

5
0
1
,1
7
1

P
A
W
S
-a

s1
6
n1

1
0
0

1
.6
8

2
.2
1

4
8
4
,4
8
1

6
3
7
,4
2
2

f1
6
0
0
-h
ar
d

S
A
P
S

a
1
.2
5
U
0
.3
s5
n1

9
4

3
0
.6
2

3
4
.3
4

6
,4
9
9
,1
4
0

7
,7
7
7
,9
8
0

S
A
P
S
+
m

a
1
.2
5
U
0
.3
s5
n1

9
2

2
2
.5
2

3
5
.5
3

4
,7
5
0
,0
1
6

8
,0
3
8
,4
1
9

S
A
P
S
+
r

a
1
.2
5
U
0
.3
s5
n1

8
8

3
5
.3
3

3
8
.2
1

7
,4
9
0
,9
5
4

8
,9
9
6
,2
4
8

S
A
P
S
+
d

a
1
.2
5
U
0
.3
s3
0
n
1

7
0

5
4
.9
1

5
4
.6
6

1
1
,7
7
7
,4
0
4

1
4
,0
6
4
,4
7
9

S
A
P
S
+
a

a
1
.2
5
U
0
.3
s2
8
n
1
5

9
5

2
3
.1
3

3
2
.2
9

5
,0
9
7
,9
9
4

7
,3
8
9
,3
0
2

0
.2
8
5
0
f

S
A
P
S
+
t

a
1
.2
5
U
0
.3
s2
8
n
1
5

7
5

4
3
.7
4

5
7
.7
2

6
,5
1
4
,2
5
8

8
,9
9
6
,6
7
3

P
A
W
S

s1
1
n1
5

9
6

1
1
.9
4

1
8
.8
6

3
,0
0
0
,0
2
7

5
,0
1
9
,0
9
9

*
0
.0
2
3
3
f

*
0
.0
0
0
1
f

P
A
W
S
-m

s9
n1
5

9
4

1
1
.7
2

1
7
.1
5

3
,7
6
4
,0
0
3

5
,8
2
6
,4
3
7

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
1
n1
5

9
5

1
6
.3
7

2
1
.5
9

4
,7
7
8
,3
3
9

6
,3
4
8
,3
7
0

P
A
W
S
-d

s1
4
n1
5

1
0
0

9
.3
5

1
6
.0
2

2
,7
0
9
,4
2
7

4
,7
1
1
,9
9
3

P
A
W
S
-a

s1
6
n1

9
5

1
6
.2
0

1
9
.8
6

4
,6
5
1
,4
6
6

6
,0
5
3
,0
7
8

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 129



T
ab

le
V
II
I.

D
IM

A
C
S
lo
g
is
ti
cs

an
d
al
l
in
te
rv
al

se
ri
es

p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

lo
g
is
ti
cs
.c

S
A
P
S

a
1
.3
U
0
.9
s5
n1

1
0
0

0
.0
4

0
.0
5

6
,9
5
4

8
,4
3
6

S
A
P
S
+
m

a
1
.3
U
0
.9
s5
n1

1
0
0

0
.0
4

0
.0
5

6
,6
8
7

8
,2
4
6

S
A
P
S
+
r

a
1
.3
U
0
.9
s5
n1

1
0
0

0
.0
4

0
.0
5

6
,5
1
2

8
,3
2
8

S
A
P
S
+
d

a
1
.3
U
0
.9
s2
0
n1

1
0
0

0
.0
4

0
.0
4

6
,4
5
0

8
,0
7
1

S
A
P
S
+
a

a
1
.3
U
0
.9
s2
0
n1

1
0
0

0
.0
4

0
.0
5

6
,3
9
7

8
,0
2
8

*
0
.0
3
7
8
f

S
A
P
S
+
t

a
1
.3
U
0
.9
s2
0
n1
5

1
0
0

0
.0
5

0
.0
6

6
,7
4
0

8
,6
1
0

P
A
W
S

s1
n1
5

1
0
0

0
.0
2

0
.0
3

5
,2
2
9

6
,7
7
1

*
0
.0
2
8
0
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s1
n1
5

1
0
0

0
.0
2

0
.0
3

5
,1
4
4

6
,6
1
1

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
n1
5

1
0
0

0
.0
2

0
.0
3

5
,6
0
4

7
,6
1
2

P
A
W
S
-d

s0
n1
5

1
0
0

0
.0
2

0
.0
3

5
,0
4
7

6
,5
8
8

P
A
W
S
-a

s0
n1

1
0
0

0
.0
2

0
.0
3

5
,5
3
0

6
,7
3
4

lo
g
is
ti
cs
.d

S
A
P
S

a
1
.2
U
1
.0
s4
n1

1
0
0

0
.1
8

0
.1
9

1
9
,2
0
2

2
1
,2
4
8

S
A
P
S
+
m

a
1
.2
U
1
.0
s4
n1

1
0
0

0
.1
9

0
.2
0

1
8
,2
6
9

2
0
,9
0
4

S
A
P
S
+
r

a
1
.2
U
1
.0
s4
n1

1
0
0

0
.1
8

0
.2
0

1
9
,1
9
9

2
1
,4
8
6

S
A
P
S
+
d

a
1
.2
U
1
.0
s2
3
n1

1
0
0

0
.1
8

0
.1
9

1
8
,7
2
1

2
1
,3
8
4

S
A
P
S
+
a

a
1
.2
U
1
.0
s2
3
n1

1
0
0

0
.2
0

0
.2
1

1
8
,8
6
9

2
1
,3
5
5

0
.3
6
9
0
f

S
A
P
S
+
t

a
1
.2
U
1
.0
s2
3
n1
5

1
0
0

0
.3
6

0
.3
8

2
1
,7
9
4

2
4
,0
0
5

P
A
W
S

s1
n1
5

1
0
0

0
.1
2

0
.1
4

1
8
,3
3
0

2
2
,6
3
2

0
.0
7
0
7
f

P
A
W
S
-m

s1
n1
5

1
0
0

0
.1
1

0
.1
2

1
8
,1
6
3

2
1
,5
4
6

*
0
.0
0
0
0
t

P
A
W
S
-r

s1
n1
5

1
0
0

0
.1
2

0
.1
3

1
8
,3
1
6

2
1
,7
7
7

P
A
W
S
-d

s0
n1

1
0
0

0
.1
2

0
.1
3

1
7
,5
8
4

2
1
,3
5
1

P
A
W
S
-a

s0
n1

1
0
0

0
.1
1

0
.1
2

1
7
,8
6
7

2
1
,2
3
6

*
0
.0
5
1
9
f

130 JOHN THORNTON



ai
s1
0

S
A
P
S

a
1
.3
U
0
.9
s4
n1

1
0
0

0
.0
6

0
.1
0

1
1
,7
0
8

1
8
,0
8
5

*
0
.0
1
8
2
f

S
A
P
S
+
m

a
1
.3
U
0
.9
s4
n1

1
0
0

0
.0
7

0
.1
1

1
3
,1
9
7

1
9
,6
9
2

S
A
P
S
+
r

a
1
.3
U
0
.9
s4
n1

1
0
0

0
.0
7

0
.1
0

1
3
,2
2
5

1
8
,4
4
2

S
A
P
S
+
d

a
1
.3
U
0
.9
s2
5
n1

1
0
0

0
.0
7

0
.1
0

1
2
,5
1
6

1
8
,7
5
5

S
A
P
S
+
a

a
1
.3
U
0
.9
s2
5
n1

1
0
0

0
.0
6

0
.0
9

1
2
,0
8
6

1
7
,2
9
9

0
.3
0
1
1
f

S
A
P
S
+
t

a
1
.3
U
0
.9
s2
5
n1
5

1
0
0

0
.0
8

0
.1
1

1
3
,2
0
7

1
8
,6
7
0

P
A
W
S

s5
2
n1
5

1
0
0

0
.0
6

0
.0
9

1
3
,6
6
1

1
9
,5
9
4

0
.0
7
1
2
f

0
.4
2
4
3
t

P
A
W
S
-m

s5
2
n1
5

1
0
0

0
.0
7

0
.0
9

1
4
,2
2
7

2
0
,0
8
6

P
A
W
S
-r

s5
2
n1
5

1
0
0

0
.0
7

0
.1
1

1
5
,0
2
4

2
2
,9
7
4

P
A
W
S
-d

s2
n1
5

1
0
0

0
.0
7

0
.0
9

1
4
,0
8
1

1
9
,8
9
2

P
A
W
S
-a

s2
n1

1
0
0

0
.0
7

0
.1
0

1
4
,8
3
6

2
0
,6
3
8

ai
s1
2

S
A
P
S

a
1
.2
5
U
0
.9
5
s4
n1

1
0
0

0
.6
0

0
.8
6

8
6
,0
2
5

1
2
3
,0
9
9

*
0
.0
0
1
4
f

S
A
P
S
+
m

a
1
.2
5
U
0
.9
5
s4
n1

1
0
0

0
.6
7

0
.9
6

9
3
,8
6
7

1
3
3
,9
9
2

S
A
P
S
+
r

a
1
.2
5
U
0
.9
5
s4
n1

1
0
0

0
.6
0

0
.8
8

8
5
,2
0
2

1
2
5
,7
2
7

S
A
P
S
+
d

a
1
.2
5
U
0
.9
5
s3
0
n1

1
0
0

0
.6
0

0
.8
6

8
8
,4
8
2

1
2
7
,7
3
7

S
A
P
S
+
a

a
1
.2
5
U
0
.9
5
s3
0
n1
5

1
0
0

0
.5
3

0
.8
1

7
8
,0
8
6

1
1
7
,7
7
4

*
0
.0
0
0
0
f

S
A
P
S
+
t

a
1
.2
5
U
0
.9
5
s3
0
n1
5

1
0
0

0
.6
8

0
.9
8

9
0
,4
3
7

1
3
0
,9
4
9

P
A
W
S

s1
4
8
n1
5

1
0
0

0
.5
7

0
.8
0

1
0
2
,7
7
4

1
4
2
,9
7
9

0
.2
5
6
5
f

0
.0
7
9
2
t

P
A
W
S
-m

s1
4
8
n1
5

1
0
0

0
.5
2

0
.7
9

9
4
,5
1
2

1
4
3
,5
4
1

P
A
W
S
-r

s1
4
8
n1
5

1
0
0

0
.6
4

0
.9
4

1
1
1
,7
9
2

1
6
4
,8
0
7

P
A
W
S
-d

s1
n1

1
0
0

0
.6
0

0
.8
5

1
0
2
,2
5
3

1
4
5
,9
8
2

P
A
W
S
-a

s1
n1

1
0
0

0
.6
0

0
.8
7

1
0
2
,2
7
5

1
4
9
,9
5
8

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 131



T
ab

le
IX
.

D
IM

A
C
S
p
ar
it
y
-l
ea
rn
in
g
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

p
ar
1
6
-m

ed
S
A
P
S

a
2
U
0
.2
5
s7
n1

8
8

1
2
.3
2

2
0
.9
8

5
,5
8
9
,1
9
5

7
,7
2
0
,9
6
5

S
A
P
S
+
m

a
2
U
0
.2
5
s7
n1

9
0

1
2
.7
3

1
9
.9
0

5
,5
6
3
,7
5
2

7
,6
6
7
,1
4
5

S
A
P
S
+
r

a
2
U
0
.2
5
s7
n1

8
9

1
0
.1
9

2
0
.9
5

4
,6
2
4
,3
0
0

7
,3
4
0
,4
8
5

S
A
P
S
+
d

a
2
U
0
.2
5
s1
5
n1

9
6

1
0
.6
8

1
5
.2
2

4
,9
8
5
,9
0
9

6
,6
7
7
,6
2
0

S
A
P
S
+
a

a
2
U
0
.2
5
s1
5
n1
5

9
5

1
1
.0
1

1
4
.4
8

4
,8
8
5
,1
4
8

6
,5
9
5
,2
8
8

0
.3
1
8
1
f

S
A
P
S
+
t

a
2
U
0
.2
5
s1
5
n1
5

4
0

n
/a

5
4
.5
3

n
/a

1
2
,8
9
9
,7
5
9

P
A
W
S

s3
6
n1
5

9
7

5
.3
2

8
.7
7

2
,6
4
6
,5
3
1

4
,4
9
6
,7
6
3

0
.0
6
9
2
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s3
6
n1
5

1
0
0

6
.0
0

8
.1
4

3
,1
1
6
,2
1
9

4
,2
1
6
,2
5
1

*
0
.0
0
0
0
t

P
A
W
S
-r

s3
6
n1
5

9
9

6
.7
0

8
.9
8

3
,3
1
6
,7
1
0

4
,5
1
7
,8
3
2

P
A
W
S
-d

s3
n1
5

9
7

8
.1
6

1
0
.3
6

4
,0
8
1
,2
2
5

5
,3
2
0
,9
3
2

P
A
W
S
-a

s3
n1
5

9
8

7
.3
0

1
0
.3
1

3
,8
3
5
,8
1
4

5
,5
1
2
,2
0
0

p
ar
1
6
-h
ar
d

S
A
P
S

a
1
.4
U
0
.9
s4
n1

8
6

1
3
.7
8

1
8
.7
1

6
,4
5
4
,5
9
7

9
,7
2
5
,4
9
5

S
A
P
S
+
m

a
1
.4
U
0
.9
s4
n1

8
3

1
7
.0
2

2
0
.1
9

7
,6
8
7
,6
1
2

1
0
,2
8
6
,2
4
2

S
A
P
S
+
r

a
1
.4
U
0
.9
s4
n1

8
7

1
2
.3
4

1
7
.3
7

5
,7
8
1
,6
0
4

8
,9
5
0
,7
5
7

S
A
P
S
+
d

a
1
.4
U
0
.9
s3
0
n1

9
0

1
4
.8
8

1
6
.8
7

6
,9
5
4
,9
6
2

8
,5
4
7
,1
2
9

S
A
P
S
+
a

a
1
.4
U
0
.9
s2
5
n1

9
4

1
2
.8
6

1
6
.1
1

5
,7
5
1
,1
9
0

7
,5
9
7
,7
6
4

0
.0
7
9
0
f

S
A
P
S
+
t

a
1
.4
U
0
.9
s2
5
n1
5

7
9

2
8
.1
7

3
6
.2
0

7
,2
7
2
,3
8
6

9
,1
4
1
,0
4
2

P
A
W
S

s4
0
n1
5

9
8

6
.7
9

9
.5
1

3
,3
7
9
,9
0
9

4
,8
0
9
,4
1
8

0
.1
0
5
7
f

*
0
.0
0
0
0
f

P
A
W
S
-m

s4
0
n1
5

1
0
0

6
.4
3

8
.4
5

3
,3
1
4
,9
5
8

4
,3
5
5
,5
0
9

*
0
.0
0
0
0
t

P
A
W
S
-r

s4
0
n1
5

9
8

6
.6
7

8
.9
0

3
,3
1
2
,2
6
1

4
,4
9
3
,7
5
8

P
A
W
S
-d

s3
n1
5

9
7

1
2
.2
5

1
3
.7
8

6
,1
4
4
,1
9
8

7
,1
0
4
,4
7
8

P
A
W
S
-a

s3
n1

9
9

7
.6
7

1
0
.7
9

4
,0
7
2
,9
2
5

5
,7
6
1
,0
6
5

132 JOHN THORNTON



The three instances on which SAPS does dominate are of relatively small size

and can each be solved within 0.32 s by Satz or zChaff, and for those problems

which the complete solvers find challenging (i.e., take longer than 1 s to solve),

SAPS equals the performance of PAWS on only two instances: uf400-hard and

bin50-40. In this context, bin50-40 presents an interesting case, as it has the longest

solution times and highest flip count within the problem set, so any conclusion of

the superiority of PAWS on larger problems must necessarily be qualified. Also, as

with all empirical evaluations of stochastic local search algorithms, our

conclusions cannot be reliably generalized beyond the given problem set. Having

said this, the results do indicate that additive weighting has better general time

performance than any of the multiplicative alternatives considered.

5.2. PAWS VARIANTS

An examination of the relative performance of each PAWS variant in Table XI

shows that standard PAWS is better on 12 instances, PAWS-m is better on 11

instances, PAWS-d is better on five instances, and PAWS-a is better on one

instance (but only marginally). This first indicates that PAWS-r and PAWS-a do

not perform well, and by implication that the random flat move heuristic is

playing an important role in the performance of PAWS (i.e., both PAWS-r and

PAWS-a have had the random flat move heuristic removed).

Considering the flip count statistics of PAWS in relation to PAWS-d, there

are several problems where PAWS-d has considerably worse performance, for

example, bw_large.c, flat200-med, g250.29 and par16-hard, whereas on the five

problems where PAWS-d has the best performance, the mean flip count in

comparison to PAWS differs by less than 10Q. A further run-length
distribution (RLD) analysis (Hoos and Stützle, 1998) comparing flip performance

on these problems confirmed that PAWS-d does not clearly dominate PAWS on

any problem instance (an RLD analysis differs from the RTD analysis only in

considering flip instead of time performance). Hence there is strong evidence

suggesting that deterministic smoothing performs better than probabilistic

smoothing for PAWS.

Lastly, the nearly equal first status of PAWS and PAWS-m (on a simple count

of the problems on which they do better) suggests that they have roughly equal

overall performance. However, a closer analysis of the flip counts for each

problem shows there are several problems on which PAWS has considerably

better mean flip performance (uf250-med, f800-hard, f1600-hard, and bin50-40)

and a similar number on which PAWS-m appears to dominate (par16-med,

par16-hard, and bin50-40). We therefore performed another RLD analysis on

these problems, which showed a significant dominance only on bin50-40 (in

favour of PAWS) and bin50-80 (in favour of PAWS-m). As there was no

significant difference on any other problem, this suggests the multiple inclusion

heuristic has a minimal effect on the overall performance of PAWS.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 133



T
ab

le
X
.

R
an
d
o
m

b
in
ar
y
C
S
P
p
ro
b
le
m

re
su
lt
s.

P
ro
b
le
m

M
et
h
o
d

P
ar
am

et
er
s

S
u
cc
es
s
(Q

)
T
im

e
(s
)

F
li
p
s

W
il
co
x
o
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

In
tr
a

In
te
r

b
in
3
0
-8
0

S
A
P
S

a
1
.3
U
0
.1
s6
n1

1
0
0

0
.0
6

0
.0
8

8
,6
6
1

1
2
,2
9
9

S
A
P
S
+
m

a
1
.3
U
0
.1
s6
n1

1
0
0

0
.0
5

0
.0
8

7
,7
2
9

1
1
,8
5
3

S
A
P
S
+
r

a
1
.3
U
0
.1
s6
n1

1
0
0

0
.0
5

0
.0
8

7
,9
4
0

1
2
,2
4
2

S
A
P
S
+
d

a
1
.3
U
0
.1
s2
0
n1

1
0
0

0
.0
5

0
.0
7

7
,9
9
9

1
1
,6
4
2

S
A
P
S
+
a

a
1
.3
U
0
.1
s2
0
n1

1
0
0

0
.0
5

0
.0
7

7
,5
1
1

1
0
,5
9
3

*
0
.0
0
0
9
f

S
A
P
S
+
t

a
1
.3
U
0
.1
s2
0
n1
5

1
0
0

0
.0
5

0
.0
8

7
,6
5
2

1
0
,5
9
4

P
A
W
S

s7
n1
5

1
0
0

0
.0
4

0
.0
6

7
,5
7
6

1
0
,6
3
3

*
0
.0
4
4
9
f

*
0
.0
0
6
6
f

P
A
W
S
-m

s7
n1
5

1
0
0

0
.0
4

0
.0
5

7
,2
8
3

1
0
,1
0
2

*
0
.0
0
0
0
t

P
A
W
S
-r

s9
n1
5

1
0
0

0
.0
5

0
.0
7

9
,0
8
9

1
2
,0
8
9

P
A
W
S
-d

s1
5
n1
5

1
0
0

0
.0
5

0
.0
7

8
,4
6
3

1
1
,8
0
3

P
A
W
S
-a

s1
7
n1

1
0
0

0
.0
5

0
.0
7

8
,1
7
2

1
1
,9
5
6

b
in
3
0
-4
0

S
A
P
S

a
1
.2
5
U
0
.5
s6
n1

1
0
0

0
.0
8

0
.1
2

1
3
,7
1
6

1
9
,7
1
1

*
0
.0
1
0
1
f

S
A
P
S
+
m

a
1
.2
5
U
0
.5
s6
n1

1
0
0

0
.0
9

0
.1
2

1
4
,4
7
0

2
0
,1
4
9

0
.4
0
7
2
t

S
A
P
S
+
r

a
1
.2
5
U
0
.5
s6
n1

1
0
0

0
.0
8

0
.1
2

1
4
,0
3
1

2
0
,3
3
0

S
A
P
S
+
d

a
1
.2
5
U
0
.5
s1
7
n1

1
0
0

0
.0
8

0
.1
1

1
3
,6
4
4

1
8
,7
9
7

S
A
P
S
+
a

a
1
.2
5
U
0
.5
s1
5
n1

1
0
0

0
.0
8

0
.1
1

1
2
,7
4
1

1
9
,1
1
9

0
.0
0
9
1
f

S
A
P
S
+
t

a
1
.2
5
U
0
.5
s1
5
n1
5

1
0
0

0
.0
8

0
.1
2

1
2
,0
4
4

1
7
,5
4
0

P
A
W
S

s7
n1
5

1
0
0

0
.0
8

0
.1
2

1
5
,9
2
7

2
2
,4
2
2

*
0
.0
0
0
0
f

P
A
W
S
-m

s7
n1
5

1
0
0

0
.0
8

0
.1
3

1
5
,7
7
9

2
4
,3
2
1

P
A
W
S
-r

s9
n1
5

1
0
0

0
.1
0

0
.1
4

1
8
,7
4
6

2
7
,3
0
9

P
A
W
S
-d

s2
0
n1
5

1
0
0

0
.0
8

0
.1
2

1
5
,7
9
8

2
3
,2
8
7

P
A
W
S
-a

s2
0
n1

1
0
0

0
.1
0

0
.1
4

1
9
,4
3
2

2
7
,6
1
0

134 JOHN THORNTON



b
in
5
0
-8
0

S
A
P
S

a
1
.2
U
0
.1
s6
n1

1
0
0

1
.8
1

2
.9
2

1
1
9
,5
5
2

1
8
6
,5
5
2

*
0
.0
1
8
1
f

S
A
P
S
+
m

a
1
.2
U
0
.1
s6
n1

1
0
0

2
.0
8

3
.8
2

1
3
0
,0
2
2

2
2
4
,2
3
1

S
A
P
S
+
r

a
1
.2
U
0
.1
s6
n1

1
0
0

2
.3
5

3
.5
3

1
4
1
,7
7
7

2
1
6
,6
5
1

S
A
P
S
+
d

a
1
.2
U
0
.1
s3
0
n1
5

1
0
0

2
.5
8

3
.8
1

2
0
2
,7
4
5

2
9
7
,0
9
9

S
A
P
S
+
a

a
1
.2
U
0
.1
s3
0
n1

1
0
0

2
.1
9

3
.5
4

1
6
0
,8
7
1

2
6
2
,7
2
7

S
A
P
S
+
t

a
1
.2
U
0
.1
s2
5
n1
5

9
8

2
.1
2

7
.0
9

1
4
1
,2
2
6

6
0
4
,3
8
0

P
A
W
S

s5
n1
5

1
0
0

1
.4
4

1
.8
5

1
2
8
,8
3
7

1
6
8
,4
0
2

0
.4
0
1
1
f

0
.3
5
7
4
f

P
A
W
S
-m

s5
n1
5

1
0
0

0
.9
9

1
.4
2

9
0
,5
6
7

1
3
0
,1
6
2

*
0
.0
0
6
2
t

P
A
W
S
-r

s5
n1
5

1
0
0

1
.7
3

2
.6
0

1
6
5
,0
6
5

2
6
6
,5
1
4

P
A
W
S
-d

s3
0
n1
5

1
0
0

1
.6
3

1
.9
9

1
4
7
,5
5
2

1
8
2
,7
6
3

P
A
W
S
-a

s3
0
n1
5

1
0
0

1
.4
4

2
.1
4

1
3
4
,1
8
7

1
9
8
,0
1
3

b
in
5
0
-4
0

S
A
P
S

a
1
.2
5
U
0
.2
5
s5
n1

9
9

9
6
.8
4

1
4
9
.0
5

7
,5
7
9
,3
3
8

1
1
,5
6
2
,1
0
3

0
.0
7
3
5
f

S
A
P
S
+
m

a
1
.2
5
U
0
.2
5
s5
n1

9
2

1
1
4
.6
9

1
6
5
.6
7

8
,9
6
1
,1
3
3

1
1
,5
5
2
,9
1
4

0
.2
5
3
5
t

S
A
P
S
+
r

a
1
.2
5
U
0
.2
5
s5
n1

1
0
0

1
0
0
.5
8

1
4
9
.4
7

7
,7
8
3
,1
3
4

1
1
,4
8
2
,6
7
3

S
A
P
S
+
d

a
1
.2
5
U
0
.2
5
s2
0
n1

9
9

8
1
.2
4

1
2
0
.7
6

6
,4
5
0
,3
6
8

9
,4
4
9
,1
6
4

S
A
P
S
+
a

a
1
.2
5
U
0
.2
5
s2
0
n1

1
0
0

1
0
1
.3
8

1
3
1
.0
5

7
,6
8
2
,5
7
7

1
2
,1
3
0
,1
1
8

0
.3
3
0
5
f

S
A
P
S
+
t

a
1
.2
5
U
0
.2
5
s2
0
n1
5

3
7

n
/a

3
3
4
.8
1

n
/a

3
2
,4
5
4
,5
2
8

P
A
W
S

s6
n1
5

9
8

1
2
1
.1
2

1
6
9
.5
5

1
0
,8
6
6
,8
3
8

1
4
,8
4
8
,5
4
7

P
A
W
S
-m

s6
n1
5

9
1

1
5
5
.6
1

2
0
9
.7
3

1
3
,6
4
4
,6
4
8

1
7
,1
7
0
,3
5
9

P
A
W
S
-r

s6
n1
5

1
0
0

1
1
4
.8
5

1
9
4
.1
7

1
0
,4
8
7
,1
1
6

1
7
,1
6
4
,7
9
7

P
A
W
S
-d

s3
0
n1
5

1
0
0

8
4
.6
4

1
1
9
.1
3

7
,5
9
1
,2
6
7

1
3
,6
5
9
,1
8
1

P
A
W
S
-a

s3
0
n1

9
9

1
0
0
.4
4

1
2
6
.9
0

8
,9
2
3
,1
8
6

1
4
,8
7
4
,4
9
6

*
0
.0
4
1
9
f

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 135



T
ab

le
X
I.

O
v
er
al
l
p
ro
b
le
m

co
m
p
ar
is
o
n
.

P
ro
b
le
m

B
es
t
ti
m
e
v
ar
ia
n
t

L
is
t
le
n
g
th

F
li
p
s
p
er

se
co
n
d

S
A
P
S

P
A
W
S

O
v
er
al
l

W
il
co
x
o
n

D
P
L
L

S
A
P
S

S
A
P
S
+
t

P
A
W
S

S
A
P
S

P
A
W
S

b
w
_
la
rg
e.
a

S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
2
1
J

0
.0
1
z

1
.4
8
4
3

1
.9
5
2
7

2
.8
4
5
0

2
2
2
,9
6
7

2
5
3
,1
8
4

b
w
_
la
rg
e.
b

S
A
P
S
+
a

P
A
W
S
-m

n
o
t
si
g

0
.2
1
2
4
�

.0
.0
1
z

1
.1
4
5
7

1
.7
7
8
6

3
.1
0
0
5

1
7
6
,0
7
3

2
0
9
,8
8
8

b
w
_
la
rg
e.
c

S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J

.0
.5
3
z

1
.0
1
8
5

3
.2
6
5
5

4
.0
9
1
1

7
9
,5
2
9

1
7
1
,7
1
9

b
w
_
la
rg
e.
d

S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J

.2
.0
1
z

1
.0
6
5
4

5
.7
5
4
2

4
.9
9
2
3

6
3
,3
2
0

1
3
1
,7
7
2

fl
at
1
0
0
-m

ed
S
A
P
S
+
d

P
A
W
S
-m

S
A
P
S

0
.0
0
0
3
J

0
.0
1
s

1
.1
6
1
2

2
.0
9
7
7

3
.4
8
9
0

5
4
6
,5
2
3

5
7
8
,7
0
2

fl
at
1
0
0
-h
ar
d

S
A
P
S
+
a

P
A
W
S
-d

S
A
P
S

0
.0
0
1
2
J

.0
.0
1
z

1
.0
4
0
5

2
.1
4
1
1

3
.0
9
2
9

5
6
4
,1
5
2

5
9
2
,9
9
7

fl
at
2
0
0
-m

ed
S
A
P
S
+
a

P
A
W
S

n
o
t
si
g

0
.0
3
5
5
�

0
.1
2
s

1
.0
6
1
7

3
.0
7
8
2

5
.2
7
0
8

4
8
3
,8
9
1

5
1
9
,4
7
7

fl
at
2
0
0
-h
ar
d

S
A
P
S
+
d

P
A
W
S

n
o
t
si
g

0
.2
7
4
7
�

.0
.0
3
s

1
.0
0
1
6

3
.2
0
4
4

3
.4
5
5
1

4
9
7
,7
1
6

5
4
1
,4
4
2

g
1
2
5
.1
7

S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J

>
1
h
r

1
.0
0
4
5

3
.2
7
6
6

3
.5
9
9
6

5
1
,2
8
9

7
7
,2
2
2

g
2
5
0
.2
9

S
A
P
S
+
r

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J

>
1
h
r

1
.0
3
5
8

5
.3
5
1
2

4
.7
1
9
9

1
1
,9
2
7

1
4
,4
3
9

u
f1
0
0
-h
ar
d

S
A
P
S
+
d

P
A
W
S

n
o
t
si
g

0
.0
8
5
0
J

0
.0
1
z

1
.0
2
6
9

1
.4
6
0
9

1
.9
6
8
5

4
3
3
,7
1
2

4
5
4
,3
1
4

u
f2
5
0
-m

ed
S
A
P
S
+
d

P
A
W
S

P
A
W
S

0
.0
0
0
2
J

1
.2
5
s

1
.0
7
9
3

1
.7
3
7
1

3
.1
5
5
0

3
9
1
,2
6
3

4
0
6
,8
4
2

u
f2
5
0
-h
ar
d

S
A
P
S
+
a

P
A
W
S

S
A
P
S

0
.0
0
0
0
J

.0
.3
2
s

1
.0
0
2
7

1
.7
4
4
8

3
.3
3
3
8

3
9
7
,7
9
6

4
0
7
,5
6
6

u
f4
0
0
-m

ed
S
A
P
S
+
a

P
A
W
S

P
A
W
S

0
.0
0
0
0
J

5
7
.8
1
s

1
.2
0
4
4

2
.0
9
8
9

4
.0
6
4
7

3
5
8
,8
9
8

3
7
9
,9
4
5

u
f4
0
0
-h
ar
d

S
A
P
S
+
a

P
A
W
S

n
o
t
si
g

0
.1
7
7
8
�

1
7
8
.9
2
s

1
.0
0
1
1

2
.0
1
5
1

3
.3
4
6
0

3
6
1
,1
6
8

4
0
7
,8
9
2

f8
0
0
-m

ed
S
A
P
S

P
A
W
S

P
A
W
S

0
.0
0
0
0
J-

>
1
h
r

1
.0
2
1
1

2
.8
4
9
0

5
.2
1
7
3

2
8
9
,4
1
3

3
2
1
,8
6
1

136 JOHN THORNTON



f8
0
0
-h
ar
d

S
A
P
S
+
r

P
A
W
S
-d

P
A
W
S

0
.0
0
0
1
J-

>
1
h
r

1
.0
0
3
2

2
.8
4
9
2

4
.1
2
4
4

2
8
6
,7
4
0

3
4
2
,0
8
4

f1
6
0
0
-m

ed
S
A
P
S
+
m

P
A
W
S

P
A
W
S

0
.0
0
0
0
J

>
1
h
r

1
.0
1
5
5

4
.2
0
5
2

4
.2
5
0
9

2
1
7
,5
9
0

3
1
4
,2
6
0

f1
6
0
0
-h
ar
d

S
A
P
S
+
a

P
A
W
S
-d

P
A
W
S

0
.0
0
0
0
J

>
1
h
r

1
.0
0
3
0

4
.2
9
8
5

7
.9
2
5
0

2
1
5
,0
2
1

2
5
7
,1
7
3

lo
g
is
ti
cs
.c

S
A
P
S
+
a

P
A
W
S
-d

P
A
W
S

0
.0
0
0
0
J

0
.0
8
z

2
.5
2
6
3

2
.9
0
6
6

3
.7
9
4
0

1
7
9
,3
1
8

2
4
7
,5
0
2

lo
g
is
ti
cs
.d

S
A
P
S
+
m

P
A
W
S
-a

P
A
W
S

0
.0
0
0
0
J

0
.1
9
z

1
7
.7
1
4
8

1
7
.8
1
2
7

1
8
.2
2
8
9

1
1
0
,8
1
3

1
6
7
,2
0
3

ai
s1
0

S
A
P
S
+
a

P
A
W
S

n
o
t
si
g

0
.3
5
3
2
�

0
.0
6
s

1
.0
1
3
0

1
.2
9
6
8

2
.0
5
3
3

1
8
7
,0
2
8

2
0
9
,9
6
8

ai
s1
2

S
A
P
S
+
a

P
A
W
S

n
o
t
si
g

0
.3
5
1
8
�

0
.1
7
s

1
.0
0
3
6

1
.3
0
6
2

1
.7
5
1
7

1
4
3
,3
4
7

1
7
9
,2
2
8

p
ar
1
6
-m

ed
S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
0
3
J-

.0
.4
9
z

1
.0
0
0
7

3
.7
7
1
0

5
.3
4
2
4

3
3
7
,5
4
8

4
9
9
,3
1
1

p
ar
1
6
-h
ar
d

S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J-

.0
.5
6
s

1
.0
0
0
5

3
.8
1
6
3

5
.6
0
8
2

4
6
8
,0
5
6

4
9
6
,3
7
0

b
in
3
0
-8
0

S
A
P
S
+
a

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J

0
.2
6
s

1
.0
3
6
3

1
.6
5
5
3

2
.8
0
7
0

1
5
3
,1
6
9

1
8
7
,0
8
0

b
in
3
0
-4
0

S
A
P
S
+
d

P
A
W
S

n
o
t
si
g

0
.1
2
6
3
�

.0
.0
2
z

1
.0
2
2
0

1
.7
8
2
8

3
.3
1
9
4

1
7
0
,8
5
7

1
8
9
,8
2
5

b
in
5
0
-8
0

S
A
P
S

P
A
W
S
-m

P
A
W
S

0
.0
0
0
0
J

>
1
h

1
.0
0
9
1

1
.6
7
7
3

3
.4
7
8
3

6
3
,9
0
9

9
0
,8
9
0

b
in
5
0
-4
0

S
A
P
S
+
d

P
A
W
S
-d

n
o
t
si
g

0
.4
7
6
6
�

>
1
h

1
.0
0
0
2

1
.4
8
8
1

5
.1
3
8
7

7
8
,8
2
2

8
9
,4
0
9

K
ey
:
th
e
D
P
L
L
co
lu
m
n
sh
o
w
s
th
e
b
es
t
ti
m
e
in

se
co
n
d
s
fo
r
th
e
S
at
z
an
d
zC

h
af
f
D
P
L
L
m
et
h
o
d
s,
s
in
d
ic
at
es

S
at
z
d
o
m
in
at
ed

zC
h
af
f,
z
in
d
ic
at
es

zC
h
af
f

d
o
m
in
at
ed

S
at
z
an
d
.
in
d
ic
at
es

th
at

th
e
S
at
z
o
r
zC

h
af
f
ru
n
-t
im

e
d
o
m
in
at
es

al
l
o
th
er

m
et
h
o
d
s;

J
in
d
ic
at
es

th
e
ru
n
-t
im

e
d
is
tr
ib
u
ti
o
n
(R
T
D
)
o
f
th
e
o
v
er
al
l

b
es
t
S
A
P
S
o
r
P
A
W
S
v
ar
ia
n
t
d
o
m
in
at
es

th
e
o
th
er

b
es
t
v
ar
ia
n
t;
-
in
d
ic
at
es

th
e
R
T
D
d
o
m
in
at
io
n
is
n
o
t
p
er
fe
ct
,
so
m
e
cr
o
ss
-o
v
er

at
so
lu
ti
o
n
p
ro
b
ab
il
it
y
<
0
.1
;

�
in
d
ic
at
es

si
g
n
ifi
ca
n
t
cr
o
ss
-o
v
er

o
f
R
T
D
s
at

so
lu
ti
o
n
p
ro
b
ab
il
it
y
>
0
.1
.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 137



We therefore conclude, on the basis of the experimental evidence, that the

PAWS deterministic smoothing and random flat move heuristics do contribute

positively to the performance of additive weighting and that the multiple

inclusion heuristic has no significant effect either positively or negatively.

5.3. SAPS VARIANTS

Again performing a count on Table XI gives 17 problems for which SAPS+a is

better, six problems for which SAPS+d is better, two problems for which

SAPS+r is better, two problems for which SAPS+m is better, and two problems

for which SAPS is better. The counts certainly suggest that SAPS benefits from

the inclusion of the PAWS heuristics. However, a closer examination of the

problem flip counts shows that it is hard to draw a general conclusion that fits all

problem instances.

First, SAPS+a and SAPS+d often clearly perform better than the other

variants, while themselves having similar performance, that is, on bw_large.b, c

and d, flat100-med, flat200-med and hard, uf400-med and hard, and par16-med

and hard. However, there are other problems where SAPS does well and SAPS+a

and SAPS+d do relatively worse, that is, on f800-med and hard, f1600-med, and

bin50-80. Then there are problems where SAPS+d does badly relative to all other

variants, that is, g125.17 and f1600-hard, and other problems where SAPS+d

does well and SAPS+a does poorly, that is, g250.29 and bin50-40. Considering

the other variants, SAPS+r stands out only on f800-hard and g250.29, and

SAPS+m stands out only on f1600-med; otherwise their performance follows

SAPS fairly closely. Hence, we consider that the +m and +r heuristics do not

have a major effect on SAPS, at least in isolation. This result is further supported

by the relatively insignificant effects that would be expected from these

heuristics. First, although SAPS+m biases the move choice toward literals that

appear more than once in the false clause list, it does not override the move cost.

Also, removing this heuristic from PAWS has already been shown above to have

little effect. Second, the SAPS+r heuristic is operational only in situations where

no improving move is available, and then only for 1Q of the time. At this point it

simply reduces the domain of choice from all possible moves, to moves that have

a zero cost (i.e., within the threshold of T0.1). While this removes the chance of

taking a cost increasing move, such moves will typically be quickly reversed in a

local search. Also, in further work on SAPS, the removal of the random flip

heuristic has been shown to have little noticeable effect (Tompkins and Hoos,

2004). Our results therefore support these findings.

This leaves SAPS+d and SAPS+a as the two candidate best SAPS variants. Of

these SAPS+d has a slight advantage, first, because its worst performance is on

problems for which SAPS is not competitive, and second because it represents a

simpler change to SAPS, that is, switching from probabilistic to deterministic

smoothing. However, uniformly adopting deterministic smoothing would defi-

138 JOHN THORNTON



nitely degrade the performance of SAPS on a range of the larger randomly

generated CSP and 3-SAT problems. We therefore conclude that the best overall

performance could be obtained by adding an additional SAPS parameter that

switches between deterministic and probabilistic smoothing. This extends the

results presented in (Tompkins and Hoos, 2004), where a deterministic version of

SAPS was found not to differ from SAPS in performance on a range of the

smaller problems already considered in this study.

5.4. THE SAPS THRESHOLD HEURISTIC

So far we have not considered the SAPS threshold variant, SAPS+t. The reason

is that, while it can equal the flip performance of SAPS+a (on which it is based)

for many smaller problems, it produced some of the highest failure rates of any

variant on several of the larger problems (uf400-hard, f1600-med and hard,

par16-med and hard, and bin50-40). Also, because of the additional overhead of

calculating an averaged flip cost, the time performance of SAPS+t was uniformly

worse than SAPS+a. Hence, we can conclude that adding a threshold, at least to

SAPS+a, does not improve the performance of multiplicative weighting.

In relation to the effect of the threshold heuristic on the candidate list lengths,

Table XI clearly shows the greater choice in candidate moves available to

PAWS, and that, as solution times increase, the SAPS list length tends to one.

For the SAPS+t experiments we set the threshold value to 0.1, producing SAPS+t

list lengths somewhere between those of SAPS and PAWS. Further experiments

with larger threshold values did produce longer list lengths, but these changes

uniformly caused SAPS+t performance to degrade. Hence we have no evidence

to suggest that the superior performance of PAWS can be explained by its greater

choice of moves. If this were the case, we would expect SAPS+t to have

improved over SAPS+a, as SAPS+a is PAWS except that it uses multiplicative

weighting. This refutes our earlier conjecture (Thornton et al., 2004) and reopens

the question of explaining the superior performance of PAWS, especially on the

larger problems.

6. Conclusions

The aim of this study was to identify and analyze the key features required for an

effective clause weighting local search algorithm. On the basis of the previous

work, we observed that the best clause weighting algorithms use the same

underlying strategy, that is, to increase clause weights in a local minimum and then

to periodically reduce or smooth these weights to maintain a stable relative weight

distribution that remains sensitive to local conditions in the search space. From this

we identified the key distinguishing feature of current approaches, that is, the use

of additive or multiplicative clause weighting. We therefore set out to systemati-

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 139



cally investigate the performance of additive and multiplicative clause weighting

on a range of SAT benchmark problems, and using a range of subheuristics.

Overall, our results indicate that additive weighting tends to perform better

than multiplicative weighting, particularly on larger and more difficult problems.

From our investigation into the various additive and multiplicative sub-

heuristics, we came to the following conclusions:

Y The random flat move heuristic is useful for additive weighting. This is less

relevant to multiplicative weighting, possibly because the finer weight

distinctions caused by multiplicative updates produce smaller plateau areas.
Y Deterministic weight reduction appears generally helpful for additive

weighting but assists multiplicative weighting only on selected instances.
Y The effect of the multiple inclusion heuristic is not significant. Overall it

had little effect on multiplicative weighting, and made only a small dif-

ference, both positively and negatively, to additive weighting performance.
Y The threshold heuristic caused a fairly uniform deterioration in the

performance of multiplicative weighting. This means the superior

performance of additive weighting cannot obviously be explained by the

wider choice of moves afforded by additive weight updates.

As the threshold heuristic failed to produce any improvement, we were led to

develop a new conjecture to explain the relatively better performance of the

additive approach:

First, the study has shown that the differences in performance between the

additive and multiplicative schemes cannot be explained by differences in the

subheuristics used. If this were the case, we would expect the performance of

SAPS and PAWS to become equivalent with the right application of heuristics.

However, regardless of the choice of subheuristics, additive weighting has shown

the generally superior performance.

Second, our experiments with SAPS+t indicate that there is no causative link

between the coarser weight distinctions of additive weighting and its better

performance.j Hence, the overall outcome of the study suggests there is

something inherent in additive weight updates that can improve the performance

of clause weighting algorithms. By a process of elimination, the remaining

distinction is the essential geometric nature of multiplicative weight updates; that

is, multiplicatively increasing weight will always cause those clauses with

greater weight to have a greater relative increase in weight. Conversely, additive

updates are more egalitarian, with each false clause getting an identical weight

increase. The overall effect is that multiplicative weighting will raise the weight

on a false clause more quickly, relative to other clauses with lesser weight, and

j This must be qualified by the understanding that there are other possible threshold heuristics

that may have better performance.

140 JOHN THORNTON



will also reduce weight more quickly when a clause becomes true. Hence, a

newly weighted clause will have less immediate effect on the search trajectory,

and the basic ordering of clause weight importance will differ; that is, in a

multiplicative scheme, clauses that have been false for longer will have greater

importance.

In general, therefore, additive weighting is a Fblunter_ instrument. For instance,

most clause weights at any point in an additive search will have their weights set

to one, whereas multiplicative weighting retains small real valued distinctions on

nearly all clauses that have been false. Additive weighting is also less selective: it

does not care how long a clause has been true or false, it still gets the same update.

The conjecture of our study is therefore that this generally simpler behaviour

explains the better performance of additive weighting on longer term searches. In

particular, additive weighting provides a relatively greater emphasis on clauses

that have recently become false and so is more responsive to the immediate

situation. More generally, the efficiencies gained in performing simpler clause

weight updates mean additive weighting can also dominate on smaller problems

where multiplicative weighting otherwise has the advantage in terms of flips.

Overall the case for preferring additive over multiplicative weighting is com-

pelling. First, the average flip performance of PAWS does not differ significantly

from SAPS on smaller problems and strongly dominates SAPS on the more

difficult problems (i.e., those beyond the reach of Satz or zChaff). Second,

additive weighting is more time efficient than multiplicative due to using integer

rather than real-valued clause weights. This is shown by the consistently faster

flip rates for PAWS on most problems (remembering SAPS and PAWS are run-

ning within the same software architecture). And third, the search space of

possible parameter settings is at least an order of magnitude less for PAWS than

for SAPS.

In summary, this paper balances much of the recent work on clause weighting

that has concentrated on multiplicative updates, showing that additive weighting

can be faster, simpler in terms of parameter tuning, and more applicable to larger

problems beyond the reach of complete search methods. However, multiplicative

weighting still has the better performance in several problem domains, especially

in terms of flips, and in future work it would be worth identifying the problem

characteristics and search behaviours that favour a multiplicative approach.

References

Everett, H. (1963) Generalized Lagrange multiplier method for solving problems of the optimal

allocation of resources, Oper. Res. 11, 399Y417.
Gent, I., Hoos, H., Prosser, P. and Walsh, T. (1999) Morphing: Combining structure and

randomness, in Proceedings of the Sixteenth National Conference on Artificial Intelligence
(AAAI-99), pp. 654Y660.

Gibbons, J. and Chakraborti, S. (1992) Nonparametric Statistical Inference, Statistics: Textbooks
and Monographs, Marcel Dekker, Inc., New York, pp. 241Y251.

CLAUSE WEIGHTING LOCAL SEARCH FOR SAT 141



Hoos, H. (2002) An adaptive noise mechanism for WalkSAT, in Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI-02), pp. 655Y660.

Hoos, H. and Stützle, T. (1998) Evaluating Las Vegas algorithms: Pitfalls and remedies, in

Proceedings of the Fourteenth Conference of Uncertainty in Artificial Intelligence (UAI-98), pp.
238Y245.

Hoos, H. and Stützle, T. (2005) Stochastic Local Search: Foundations and Applications, Elsevier,
New York.

Hutter, F., Tompkins, D. and Hoos, H. (2002) Scaling and probabilistic smoothing: Efficient

dynamic local search for SAT, in Proceedings of the Eighth International Conference on the
Principles and Practice of Constraint Programming (CP’02), pp. 233Y248.

Li, C. and Anbulagan, A. (1997) Look-ahead versus look-back for satisfiability problems, in

Proceedings of the Third International Conference on the Principles and Practice of Constraint
Programming (CP’97), pp. 341Y355.

McAllester, D., Selman, B. and Kautz, H. (1997) Evidence for invariance in local search, in

Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97),
pp. 321Y326.

Mills, P. and Tsang, E. (1999) Guided local search applied to the satisfiability (SAT) problem, in

Proceedings of the Fifteenth National Conference of the Australian Society for Operations
Research (ASOR’99), pp. 872Y883.

Morris, P. (1993) The Breakout method for escaping local minima, in Proceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-93), pp. 40Y45.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S. (2001) Chaff: Engineering an

efficient SAT solver, in Proceedings of the Thirty-ninth Design Automation Conference
(DAC2001), pp. 530Y535.

Prestwich, S. (2003) Local search on SAT-encoded colouring problems, in Proceedings of the
Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT-03),
pp. 105Y119.

Schuurmans, D. and Southey, F. (2000) Local search characteristics of incomplete SAT

procedures, in Proceedings of the Seventeenth National Conference on Artificial Intelligence
(AAAI-00), pp. 297Y302.

Schuurmans, D., Southey, F. and Holte, R. (2001) The exponentiated subgradient algorithm for

heuristic Boolean programming, in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-01), pp. 334Y341.

Shang, Y. and Wah, B. (1998) A discrete Lagrangian-based global search method for solving

satisfiability problems, J. Glob. Optim. 12, 61Y99.
Thornton, J. and Sattar, A. (1999) On the behaviour and application of constraint weighting, in

Proceedings of the Fifth International Conference on the Principles and Practice of Constraint
Programming, CP’99, pp. 446Y460.

Thornton, J., Pullan, W. and Terry, J. (2002) Towards fewer parameters for clause weighting SAT

algorithms, in Proceedings of the Fifteenth Australian Joint Conference on Artificial Intelligence,
AI-2002, pp. 569Y578.

Thornton, J., Pham, D., Bain, S. and Ferreira Jr., V. (2004) Additive versus multiplicative clause

weighting for SAT, in Proceedings of the Nineteenth National Conference on Artificial
Intelligence, AAAI-2004, pp. 191Y196.

Tompkins, D. and Hoos, H. (2004) Warped landscapes and random acts of SAT solving, in

Proceedings of the Eighth International Symposium on Artificial Intelligence and Mathematics,
(AI&M-04).

Wu, Z. and Wah, B. (2000) An efficient global-search strategy in discrete Lagrangian methods for

solving hard satisfiability problems, in Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-00), pp. 310Y315.

142 JOHN THORNTON



Solving Non-Boolean Satisfiability Problems with

Stochastic Local Search: A Comparison of

Encodings

ALAN M. FRISCH*, TIMOTHY J. PEUGNIEZ, ANTHONY J. DOGGETT

and PETER W. NIGHTINGALE.

Artificial Intelligence Group, Department of Computer Science, University of York, York,
YO10 5DD, UK. e-mail: frisch@cs.york.ac.uk, pn@dcs.st-and.ac.uk

Abstract. Much excitement has been generated by the success of stochastic local search procedures

at finding solutions to large, very hard satisfiability problems. Many of the problems on which these

procedures have been effective are non-Boolean in that they are most naturally formulated in terms of

variables with domain sizes greater than two. Approaches to solving non-Boolean satisfiability

problems fall into two categories. In the direct approach, the problem is tackled by an algorithm for

non-Boolean problems. In the transformation approach, the non-Boolean problem is reformulated as

an equivalent Boolean problem and then a Boolean solver is used.

This paper compares four methods for solving non-Boolean problems: one direct and three

transformational. The comparison first examines the search spaces confronted by the four methods,

and then tests their ability to solve random formulas, the round-robin sports scheduling problem,

and the quasigroup completion problem. The experiments show that the relative performance of the

methods depends on the domain size of the problem and that the direct method scales better as

domain size increases.

Along the route to performing these comparisons we make three other contributions. First, we

generalize Walksat, a highly successful stochastic local search procedure for Boolean satisfiability

problems, to work on problems with domains of any finite size. Second, we introduce a new

method for transforming non-Boolean problems to Boolean problems and improve on an existing

transformation. Third, we identify sufficient conditions for omitting at-least-one and at-most-one

clauses from a transformed formula. Fourth, for use in our experiments we propose a model for

generating random formulas that vary in domain size but are similar in other respects.

Key words: satisfiability, propositional logic, local search, encodings.

1. Introduction

Much excitement has been generated by the success of stochastic local search

(SLS) procedures at finding satisfying truth assignments to large formulas of

propositional logic. These procedures stochasticly search a space of all assign-

ments for one that satisfies the given formula. Many of the problems on which

* Author for correspondence.
. Current address: School of Computer Science, University of St Andrews, Fife KY16 9SX,

UK.

Journal of Automated Reasoning (2005) 35: 143Y179
DOI: 10.1007/s10817-005-9011-0

# Springer 2006



these methods have been effective are non-Boolean in that they are most

naturally formulated in terms of variables with domain sizes greater than two. In

order to tackle a non-Boolean problem with a Boolean procedure, the problem is

first reformulated as an equivalent Boolean problem in which multiple Boolean

variables are used in place of each non-Boolean variable.

This encode-and-solve approach often results in comparable, if not superior,

performance to solving the problem directly. Because Boolean satisfiability (SAT)

is conceptually simple, algorithms for it are often easier to design, implement, and

evaluate. And because SLS algorithms for Boolean satisfiability have been studied

intensively for more than a decade, highly optimized implementations are publicly

available.

This paper proposes and studies a new approach to solving non-Boolean

satisfaction (NB-SAT) problems: that of generalizing a Boolean SLS procedure to

operate directly on a non-Boolean formula by searching through a space of

assignments to non-Boolean variables. In particular, we have generalized Walksat

(Selman et al., 1994), a highly successful SLS procedure for Boolean satisfiability

problems, to a new procedure, NB-Walksat (first reported by Peugniez, 1998 and

by Frisch and Peugniez, 1998), that works on formulas whose variables have

domains of any finite size.j In this way we are able to apply highly refined SLS

technology directly to non-Boolean problems without having to encode non-

Boolean variables as Boolean variables.

The main question addressed by this paper is how the performance of the

direct approach compares to that of the transformational (or encode and solve)

approach. In particular we compare one direct method, NB-Walksat, and three

transformational methods by empirically testing their ability to solve large

random non-Boolean formulas, the round-robin tournament scheduling problem,

and the quasi-group completion problem. Our three transformation methods

consist of applying Walksat to the results of three transforms.

Boolean variables are merely a special case of non-Boolean variables, and,

intuitively, the difference between the non-Boolean and Boolean variables grows

as the domain size of the non-Boolean variable increases. Consequently, one

would expect that in a comparison of encodings for non-Boolean problems that

domain size would be the most important parameter to consider and that one

would find that any difference in performance between the encodings would

increase when domain size is increased. Ours is the first study to consider this.

We shall also see that the polarity of a non-Boolean formula Y whether it is

positive, negative or neither, as defined later Y is another significant factor that

affects its translation to a Boolean formula.

Our experimental results show NB-Walksat to be highly effective, demon-

strating that the effectiveness of the Walksat strategies can be transferred from

j NB-Walksat and a suite of supporting programs are available at http://www.cs.york.ac.uk/

~frisch/NB.

144 ALAN M. FRISCH ET AL.



the Boolean case to the non-Boolean case. On problems with large domain sizes

our direct method is often superior to the transformation methods, which in many

cases are ineffective.

Besides introducing the generalization of Boolean formulas to non-Boolean

formulas and Walksat to NB-Walksat, we make several other new contributions,

including the following three. (1) Of the three non-Boolean to Boolean

transformations we use, one is new and one is an enhanced version of a well-

known transformation. (2) We identify sufficient conditions for omitting at-least-

one and at-most-one clauses from a transformed formula. (3) To test the effect of

domain size on problem solving performance we want a method for generating

random formulas that vary in domain size but are similar in other respects. We

propose such a method and use it in our experiments.

We conjecture that the transformation of non-Boolean SAT to Boolean SAT

is an inherent component of using the encode-and-solve approach on any

problem that is conceived of as having non-Boolean domains. More specifically,

we put forward a hypothesis.

The SAT-Transform Hypothesis: Let P be a problem that we conceive of as

having variables with finite domains of more than two elements. Let T be a

SAT-effective transform for P; that is, P can be solved effectively by using a

SAT solver on the result of applying transform T to P. Then T can be obtained

by composing a transform from P to NB-SAT with a transform from NB-SAT

to SAT.

Note that this is an empirical hypothesis and that it could be refuted by

identifying a SAT-effective transform that cannot be decomposed in the stated

manner. Such a transform might, for example, exploit some complex interaction

between the encoding of the non-Boolean variables and the encoding of some

other aspect of the problem. But in all uses of encode-and-solve known to us the

hypothesis does hold, and thus every use embeds a transform from NB-SAT to

SAT. This underscores the importance of studying the transformation of NB-

SAT to SAT, as well as the alternative of generalizing SAT solvers to work

directly on NB-SAT.

2. Non-Boolean Formulas

Syntactically, non-Boolean formulas are constructed from propositional varia-

bles, each of which is associated with a finite, nonempty domain. We refer to the

domain of a variable X as dom(X). Atomic non-Boolean formulas (or nb-atoms)

are of the form X/d, where X is a variable and d is a member of its domain. Non-

atomic non-Boolean formulas are constructed from atomic non-Boolean formulas

with logical connectives in precisely the same manner as is used for Boolean

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 145



formulas. As an example, if X and Y are variables both with domain {d1, d2, d3},
then

X=d1 ^ Y=d2 _ Y=d3ð Þ ð1Þ
in a non-Boolean formula.

Now consider the semantics of non-Boolean formulas. A non-Boolean

assignment maps every variable to a member of its domain. A non-Boolean

assignment, A, satisfies an atomic non-Boolean formula X/d if and only if A maps

X to d. The satisfaction of nonatomic non-Boolean formulas is determined from

the satisfaction of atomic components in precisely the same manner as for

Boolean formulas. So, an assignment that maps X to d1 and Y to d3 satisfies X/1,
Y/3 and formula (1).

Walksat and many other Boolean SLS procedures operate on Boolean

formulas in conjunctive normal form (CNF), and NB-Walksat, our generalization

of Walksat, operates on non-Boolean formulas in CNF. A formula, Boolean or

non-Boolean, is in CNF if it is a conjunction of disjunction of literals. A literal is

either an atomic formula (called a positive literal) or its negation (called a

negative literal). We say that a CNF formula is positive if all its literals are

positive and negative if all its literals are negative. Thus, formula (1) is in CNF

and it is positive.

Non-Boolean formulas generalize Boolean formulas because a Boolean

formula can be transformed to a non-Boolean formula simply by replacing

every Boolean atom P with the non-Boolean atom P0/TRUE, where P0 is a

variable whose domain is {TRUE, FALSE}.
We sometimes use terms such as Bnb-atom^ or Bnb-formula^ to emphasize

that these syntactic objects are part of the non-Boolean language. Similar use is

made of terms such as Bb-atom^ and Bb-formula.^

3. NB-Walksat

Walksat is a highly successful SLS procedure for finding satisfying assignments

to Boolean formulas in clausal form. We have generalized Walksat to a new

procedure, NB-Walksat, that operates similarly on non-Boolean formulas. Indeed

when handling a Boolean formula, the two procedures perform the same search.j

NB-Walksat was implemented by replacing the code of the core search

procedure of Walksat version 19. Obtaining this generality required a complete

reworking of the data structures that maintain formulas and assignments. This

section describes the operation of NB-Walksatjj, and, since on Boolean

j We used this property to help test that NB-Walksat was correctly implemented.
jj The description applies to NB-Walksat versions 4, 5, and 6. Version 6 is the most recent

version at the time of writing this paper. Versions 1, 2, and 3 computed probability distributions in

a subtly-different way Y a difference that affects only some problem instances.

146 ALAN M. FRISCH ET AL.



formulas NB-Walksat and Walksat perform the same search, this section im-

plicitly describes the operation of Walksat.

The simplest way to understand the operation of NB-Walksat is to consider it

as working on positive CNF nb-formulas. This can be achieved by considering

NB-Walksat’s first step to be the replacement of every negative literal KX/di with
X/d1 ¦ I I I ¦ X/dij1 ¦ X/di+1 ¦ I I I ¦ X/dn, where X is a variable with domain

{d1, . . . , dn}.
Like many other SLS procedures for satisfiability, NB-Walksat operates by

choosing a random assignment and then, until a satisfying assignment is found,

repeatedly selecting a literal from an unsatisfied clause and modifying the

assignment so as to satisfy that literal, and hence the clause in which it appears.

Since the selected literal, X/d, occurs in an unsatisfied clause, the present

assignment must map X to a value other than d. The present assignment is

modified so that it maps X to d, and its mapping of all other variables is

unmodified. We say that the literal X/d has been flipped.
What distinguishes NB-Walksat and Walksat from other procedures is the

heuristic employed for choosing which literal to flip. Though recent versions of

Walksat provide a range of user-selectable heuristics for choosing the literal, the

original heuristic is the one called Bbest^ or BSKC.^ As it has been used in many

reported experiments (e.g., Selman et al., 1994; Kautz et al., 1997; Walser, 1997)

it is the Bbest^ version of Walksat that forms the basis for NB-Walksat and is the

focus of this paper.

NB-Walksat with the Bbest^ heuristic chooses a literal to flip by first

randomly selecting a clause with uniform distribution from among all the clauses

that are not satisfied by the current assignment. Let L be the set of literals in the

selected clause. We say that flipping a literal breaks a clause if the clause is

satisfied by the assignment before the flip but not after the flip. If L contains a

literal such that flipping it would break no clauses, then the literal to flip is

chosen randomly with uniform distribution from among all such literals. If L
contains no such literals, then a literal is chosen either (i) randomly with uniform

distribution from L or (ii) randomly with uniform distribution from among the

literals in L that if flipped would break the fewest clauses. The decision to do (i)

or (ii) is made randomly; with a user-specified probability, Pnoise, the Bnoisy^
choice (i) is taken. Figure 1 gives pseudo-code for the NB-Walksat procedure.

Experiments with Walksat (Selman et al., 1994) show that the incorporation

of noisy choices dramatically improves its performance and that performance can

vary greatly according to the value of Pnoise. As one would expect, the same is

true of NB-Walksat.

4. Transforming Non-Boolean Formulas

To transform NB-SAT to SAT, we map each nb-formula to a b-formula such that

the satisfying assignments of the two formulas correspond, though not

necessarily one to one. This paper presents three such transforms, called the

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 147



unary/unary, unary/binary and binary transforms. Each operates on an arbitrary

formula, though our experiments apply the transforms only to CNF formulas.

Each transform operates by replacing each nb-atom in the formula with a b-

formula that, in a sense, encodes the nb-atom it replaces. The resulting formula

is known as the kernel of the transformation. The transforms employ two core

ways of producing a kernel; we call these two encodings Bunary^ and Bbinary.^
If the unary encoding of the kernel is used, the transform also needs to conjoin

two additional formulas to the kernel, known as the at-least-one formula (or

ALO formula) and the at-most-one formula (or AMO formula). As with the

kernel, two encodings can be used for the ALO and AMO formulas: unary and

binary. The three transforms we use in this paper are enhanced binary (which

uses a binary encoding for the kernel and no ALO or AMO formula), unary/
unary (which uses unary encodings for the kernel and for the ALO and AMO

formulas), and unary/binary (which uses a unary encoding for the kernel and an

enhanced binary encoding for the ALO and AMO formulas). The unary/binary

transform is new, as is the enhanced version of the binary transform.

In the following presentation we discuss the size of the formula produced by

each transform, where we take a formula’s size to be the number of occurrences

of atoms it contains. Throughout we assume that each transform is being applied

to an nb-formula containing V variables each of which has a domain of size D,
and we present the sizes of the resulting formulas in terms of these two

parameters. The results of the discussion are summarized in Figure 2.

4.1. THE UNARY/UNARY TRANSFORM

The unary/unary transform produces a kernel by transforming each nb-atom X/d
to a distinct propositional variable, which we shall call X:d. The idea is that a

Figure 1. NB-Walksat with the Bbest^ heuristic.

148 ALAN M. FRISCH ET AL.



Boolean assignment maps X:d to TRUE if and only if the corresponding non-

Boolean assignment maps X to d. Thus, the role of an nb-variable with domain

{d1, . . . , dn} is played by n b-variables.

Furthermore, one must generally add additional formulas to the Boolean

encoding to represent the constraint that a satisfying assignment must satisfy

exactly one of X:d1, . . . , X:dn. This constraint is expressed as a conjunction of

one formula (known as the ALO formula) asserting that at least one of the

variables is true and another (known as the AMO formula) asserting that at most

one of the variables is true.

To state that at least one of X:d1, . . . , X:dn must be satisfied we simply use

the clause X:d1 ¦ I I I ¦ X:dn. The entire ALO formula is a conjunction of

such clauses, one clause for each nb-variables. Thus, the ALO formula consists

of a conjunction of V clauses each with D literals, giving it a total size of V D.
To say that at most one of X:d1, . . . , X:dn must be satisfied we add the clause

KX:di ¦ K X:dj, for all i and j such that 1 e i < j e n. The entire AMO formula is a

conjunction of such clauses, 1
2
D D�1ð Þ clauses for each nb-variable. Thus, the

AMO formula consists of a conjunction of 1
2
VD D�1ð Þ clauses, each containing

two literals, giving it a total size of VD(Dj1).

Notice that these ALO and AMO formulas are in CNF. And since the

transform produces a kernel whose form is identical to that of the original

formula, the entire b-formula produced by the unary/unary transform is in CNF if

and only if the original nb-formula is.

4.2. THE BINARY TRANSFORM

The unary/unary transform uses D b-variables to encode a single nb-variable of

domain size D and, hence, uses a base 1 encoding. By using a base 2 encoding,

the binary transformation requires only (lg D1 b-variables to encode the same nb-

Figure 2. Size of the Boolean formulas produced by each of the three transformations

applied to a non-Boolean formula of size L that has V variables, each with domain size D.
The BCNF size^ rows give the size of the formula when put into CNF form. It is assumed

that the non-Boolean formula is in CNF and its clauses each have J literals. The size of the

enhanced binary transformation is divided into two cases: a positive kernel and a negative

kernel.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 149



variable.j If X is a variable with domain {d1, . . . , dn}, the binary transform maps

an nb-literal of the form X/di by taking the binary representation of ij1 and

encoding this in (lg n1 Boolean variables. For example, if n is 4, then

X/d1 is mapped to KX2 $ KX1,

X/d2 is mapped to KX2 $ X1,

X/d3 is mapped to X2 $ KX1 and

X/d4 is mapped to X2 $ X1.

To see what happens when the domain size is not a power of two, reconsider

X to have the domain {d1, d2, d3}. If we map X/d1, X/d2 and X/d3 as above then

there is a problem in that the Boolean assignment that satisfies X2 $ X1 does not

correspond to an assignment of a domain value to X. One solution to this would

be to add an ALO formula,

:X2 ^ :X1ð Þ _ :X2 ^ :X1ð Þ _ X2 ^ X1ð Þ;
which ensures that the extraneous binary combination X2 $ X1 cannot be

satisfied in any solution. Alternatively, one could make the logically-equivalent

statement that the extraneous binary combination must be false: K(X2 $ X1). The

latter of these two has the advantage that it can be put into CNF without any

blowup, and is the method adopted by Hoos (1998, page 180).

Frisch and Peugniez (2001) introduced a version of the binary transform in

which no extraneous combinations are produced and therefore no ALO formula

is required. We call this the enhanced binary transform, and the version with

extraneous combinations the basic binary transform. We use the term binary
transform to refer generically to any version of the transform.

In the example considered above the extraneous combination is eliminated if

X/d1 is mapped to KX2,

X/d2 is mapped to X2 $ KX1 and

X/d3 is mapped to X2 $ X1.

Here, the transform of X/d1 covers two binary combinations: (KX2 $ X1) and

(KX2 $ KXl).

To see what happens in general, let X be a variable with domain {d1, . . . , dn}
and let k be 2(lg n1jn. Then X/d1, . . . , X/dk are each mapped to cover two binary

combinations, and X/dk + 1, . . . , X/dn are each mapped to cover a single binary

combination.

Notice that this transform generates no extraneous binary combinations. Also

notice that, as a special case, if n is a power of two, then each X/di (1 e i e n) is

j The ceiling of a real value x, written (x1, is the smallest integer that is greater than or

equal to x.

150 ALAN M. FRISCH ET AL.



mapped to cover a single binary combination and thus is identical to the basic

binary transform. Finally, to confirm that the extended binary transform requires

no AMO formula and no ALO formula, observe that every Boolean assignment

must satisfy the extended binary transform of exactly one of X/d1, . . . , X/dn.
Since the enhanced binary transform replaces each nb-atom with a

conjunction of at least )lg D2 b-atoms and at most (lg D1 b-atoms, it produces a

formula whose size is )lg D2 to (lg D1 times that of the original formula.j

Notice that the enhanced binary transformation of a CNF formula is not nec-

essarily in CNF. However, the enhanced binary transformation of a negative CNF

formula is almost in CNF; it is a conjunction of disjunctions of negated con-

junctions of literals. For example, using variables X and Y, both with the domain

{d1, d2, d3}, the enhanced binary transform of the clause KX/d1 ¦ KY/d2 is

K(KX2) ¦ K(Y2 $ KY1). By using De Morgan’s law, the negations can be moved

inside of the innermost conjunctions, resulting in a CNF formula of the same size.

Thus, our example formula becomes the clause X2 ¦ KY2 ¦ Y1. At the other

extreme, the enhanced binary transformation of a positive CNF formula is a

conjunction of disjunctions of conjunctions of literals. One way of transforming

this to CNF is to distribute the disjunctions over the conjunctions. Unfortunately,

applying this distribution to a disjunction of n conjunctions, each with m literals,

produces a CNF formula with nm conjuncts, each with m literals. Thus, if an

nb-clause has J literals, its enhanced binary transformation consists of between

)lg D2J and (lg D1J clauses, each with J literals. Thus, if a positive nb-formula

consists of L/J clauses each with J literals, then the size of its enhanced binary

transform is between L )lg D2J and L (lg D1J.
It is possible to avoid this exponential expansion by introducing new variables

into the formula and, indeed, this is what is generated by the unary/binary

transform to which we now turn our attention.

4.3. THE UNARY/BINARY TRANSFORM

The unary/binary transform, originally introduced by Frisch and Peugniez

(2001), produces the same kernel as the unary/unary transform. The ALO and

AMO formulas it produces achieve their effect by introducing the enhanced

binary encodings of nb-atoms and adding formulas linking the two encodings

together. Following the practice of the constraint programming community, we

call these linking formulas Bchanneling^ formulas. Since the enhanced binary

encoding requires no ALO or AMO formulas, the unary/binary encoding requires

no ALO or AMO formulas beyond the channeling formulas.

The channeling formulas that act as AMO formulas state that the unary

encoding of each nb-atom implies its enhanced binary encoding. So, for ex-

j The floor of a real value x, written )x2, is the largest integer that is less than or equal to x.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 151



ample, if the nb-variable X has domain {d1, d2, d3}, then the AMO formula for X
is

X:d1 ! :X2ð Þ ^
X:d2 ! X2 ^:X1ð Þð Þ^
X:d3 ! X2 ^ X1ð Þð Þ

which is logically equivalent to the CNF formula

:X:d1 _ :X2ð Þ ^
:X:d2 _ X2ð Þ^ :X:d2 _ :X1ð Þ^
:X:d3 _ X2ð Þ^ :X:d3 _ X1ð Þ:

The entire AMO formula is a conjunction of such channeling formulas, one for

each of nb-variable.

It is easy to see that the CNF of the channeling formula for each variable

consists of between D )lg D2 and D (lg D1 clauses of two literals. Since the entire

AMO formula consists of a conjunction of channeling formulas for each of V
variables, its total size is between 2VD)lg D2 and 2VD(lg D1.

The channeling formulas that act as ALO formulas state that for each nb-atom,

its unary encoding is implied by its enhanced binary encoding. So, for example, if

the nb-variable X has domain {d1, d2, d3}, then the ALO formula for X is

:X2 ! X:d1ð Þ ^
X2 ^ :X1ð Þ ! X:d2ð Þ^
X2 ^ X1ð Þ ! X:d3ð Þ

which is logically equivalent to the CNF formula

X2 _ X=d1ð Þ ^
:X2 _ X1 _ X:d2ð Þ^
:X2 _ :X1 _ X:d3ð Þ:

The entire ALO formula is a conjunction of channeling formulas, one linking

formula for each nb-variable. The ALO formula for each nb-variable is a

conjunction of D clauses each of size )lg D2 + 1 or (lg D1 + 1; thus the entire ALO

formula is a conjunction of DV clauses and has as a total size of between

DV()lg D2 + 1) and DV((lg D1 + 1).

4.4. WHEN ARE ALO AND AMO FORMULAS NEEDED?

It has been known for some time that certain unary SAT-encodings do not

require ALO clauses and certain others do not require AMO clauses. For

example, Jonsson and Ginsberg (1993) argue that AMO clauses are not needed in

152 ALAN M. FRISCH ET AL.



graph coloring. It has also been observed that when it is possible to omit either

the AMO or ALO clauses, doing so improves the performance of local search

algorithms. Prestwich (2004) hypothesizes that this improvement is partly a

result of increasing the solution density of the search space. The important open

question is when can ALO and AMO clauses be omitted?

This section shows that the need for such clauses is not a property of the

problem, but rather a property of the non-Boolean encoding of the problem. This

section identifies, and proves correct, a sufficient syntactic condition for

excluding ALO clauses and another for excluding AMO clauses. In fact, we

shall state this on a variable-by-variable basis; some variables may require ALO

and/or AMO clauses while others may not.

The following definition applies to all formulas, both Boolean and non-

Boolean.

DEFINITION 1 (Positive and Negative Formulas). A formula occurs positively

within itself. If a occurs positively (negatively) within g, then a occurs positively

(negatively) within g $ b, b $ g, b ¦ g, g ¦ b, b Y g, g 6 b and b 6 g. If a
occurs positively (negatively) within g, then a occurs negatively (positively)

within Kg, g Y b, g 6 b and b 6 g. A formula is said to be negative (positive)

with respect to an atom if that atom does not occur positively (negatively) in the

formula. A formula is said to be positive (negative) if it is positive (negative)

with respect to all atoms.

Notice that this generalizes our previous definition that a CNF formula is

negative if it contains no positive literals and it is positive if it contains no

negative literals.

We can partially order the Boolean assignments by the atoms that they satisfy.

If A is an atom then we write a QA b to mean that a and b are identical with the

possible exception that a satisfies A but b does not.

LEMMA 1 (Monotonicity). Let � be a formula, let A be an atom, and let a and b
be two Boolean assignments such that a QA b. If � is formula that is positive with
respect to A and is satisfied by b, then it is satisfied by a. If � as negative with
respect to A and is satisfied by a, then it is satisfied by b.

Proof. Both statements can be proved simultaneously by a straightforward

induction on the structure of �. Ì

We now turn our attention to the main theorem, which identifies conditions

under which AMO and ALO formulas can be omitted without affecting

satisfiability. The correctness of the theorem depends on the semantics, not the

syntax, of the ALO and AMO formulas. In particular, all that matters is that an

ALO (AMO) formula for X:d1, . . . , X:dn, is satisfied by an assignment if and

only if at least (most) one of X:d1, . . . , X:dn, is satisfied by that assignment.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 153



THEOREM 1 (Satisfiability without ALO or AMO). Let K be an arbitrary
Boolean formula, L be a conjunction of ALO formulas, and M be a conjunction of
AMO formulas. Let AMO(X) and ALO(X) be AMO and ALO formulas,
respectively, for X:d1, . . . , X:dn. (1) If K is negative with respect to each of
X:d1, . . . , X:dn and K $ L $ M is satisfiable, then so is K $ L $ M $ AMO(X).
(2) If K is positive with respect to each of X:d1, . . . , X:dn and K $ L $ M is
satisfiable, then so is K $ L $ M $ ALO(X).

Proof. Parts (1) and (2) are proved separately.

(1) The proof proceeds by assuming the antecedent and proving the

consequent. Let a be an assignment that satisfies K $ L $ M. We now prove

that K $ L $ M $ AMO(X) is satisfiable by induction on m, the number of atoms

in X:d1, . . . , X:dn, that are satisfied by a.
Base case, m is 0 or 1: In this case a itself satisfies K $ L $ M $ AMO(X).
Inductive case, m Q 2: The inductive hypothesis is that if K is negative with

respect to each of X:d1, . . . , X:dn, and K $ L $ M is satisfied by an assignment

that satisfies mj1 of X:d1, . . . , X:dn, then K $ L $ M $ AMO(X) is

satisfiable. Let X:di be any one of the m atoms of X:d1, . . . , X:dn, that are

satisfied by a. Let a0 be an assignment that is identical to a except that it falsifies

X:di. We now show, in turn, that a0 satisfies K, L and M. Since K is negative

with respect to X:di and a satisfies K, by the Monotonicity Lemma a0 also
satisfies K. Second, L must be satisfied by a0; the truth of an ALO formula for a

variable other than X is unaffected by the change of X:di and we have

constructed a0 so that it satisfies mj1 Q 1 of X:d1, . . . , X:dn. Finally, a0

satisfies M since a satisfies M and a0 satisfies fewer atoms than a. Since a0

satisfies K $ L $ M and mj1 of X:d1, . . . , X:dn then, by the inductive

hypothesis, K $ L $ M $ AMO(X) is satisfiable.
(2) We assume the antecedent and prove the consequent. Let a be an

assignment that satisfies K $ L $ M. If a also satisfies ALO(X), then the

consequent trivially holds. Otherwise, a doesn’t satisfy ALO(X); rather it

falsifies each of X:d1, . . . , X:dn. Let X:di be any one of X:d1, . . . , X:dn, and let

a0 be an assignment that is identical to a except that it satisfies X:di.
Clearly a0 satisfies ALO(X) so it remains to show that a0 satisfies K, L and M,

which we do in turn. Since K is positive with respect to X:di and a satisfies K,
by the Monotonicity Lemma a0 also satisfies K. Second, a0 satisfies L since a
satisfies L and a0 satisfies more atoms than a. Finally, M must be satisfied by a0;
the truth of an AMO formula for a variable other than X is unaffected by the

change of X:di and we have constructed a0 so that it satisfies exactly one of

X:d1, . . . , X:dn. Ì

COROLLARY 1 (Unary Transform without ALO or AMO). The unary
translation of a negative NB-formula is satisfiable if and only if it is satisjiable
when the AMO clauses are omitted. The unary translation of a positive NB-formula
is satisfiable if and only if it is satisfiable when the ALO clauses are omitted.

154 ALAN M. FRISCH ET AL.



Proof. We prove the first statement; the second is analogous. Let a be the

unary translation of an arbitrary negative NB-formula from which n AMO

formulas have been omitted. The Bonly-if^ part is obvious. The Bif^ part is

proved by induction on n. For the base case, if n = 0 then the corollary is

obvious. The inductive case follows from Theorem 1 by taking K to be the kernel

of a, L and M to be the ALO formulas and AMO formulas of a, and AMO(X) to
be one of the AMO formulas omitted from a. If a is satisfiable then, by the

theorem, it remains satisfiable if we conjoin it with AMO(X). Ì

To see that the need for AMO and ALO clauses is solely a property of the

encoding, not the problem being encoded, consider the problem of coloring a

graph of two connected nodes with the colors red, blue, and green. We can

encode this in NB-SAT by using two variables, X and Y, for the nodes and

{red, blue, green} as the domain of each. There are (at least) two ways to encode

the constraint that both nodes cannot be red.

:X=red _ :Y=red ð2Þ
X=blue _ X=green _ Y=blue _ Y=green ð3Þ

According to Corollary 1, AMO clauses are not needed with (2), and ALO

clauses are not needed with (3).

4.5. MIXED TRANSFORMATIONS

In presenting the three transformations it was assumed that the same

transformation is applied to all nb-variables. However, there is no reason why

different transformations couldn’t be applied to different variables. Nor is there

any reason why the AMO formula for a variable couldn’t use one encoding (say,

binary) while its ALO formula uses another encoding (say, unary).

This flexibility extends to the issue of whether ALO and AMO formulas are

required in a unary transformation. Observe that Theorem 1 applies to the

translation of a single nb-variable, X. Thus the need for ALO and AMO formulas

can be considered on a variable-by-variable basis.

5. Comparison of Search Spaces

This section considers the search spaces confronted by the four solution methods:

the direct non-Boolean method and the three transformation methods based on

the transforms of the previous section. For each method, the states in the search

space are all assignments to the variables of the formula Y Boolean or non-

Boolean Y and the state transitions are made by flipping a single literal.

Consider an nb-formula F containing V variables, each with a domain of size

D. The search space consists of DV states with V(Dj1) transitions from each.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 155



The unary/unary transformation of F contains DV b-variables and hence has

2DV states with DV transitions from each. An nb-variable X with the domain

{d1, . . . , dn} is represented in the unary/unary transformation by the b-atoms

X:d1, . . . , X:dn. A non-Boolean assignment that maps X to di corresponds to a

Boolean assignment that maps X:dj to TRUE if j = i and FALSE if j m i. In a

Boolean assignment such as this, where exactly one X:dj is mapped to TRUE, we
say that X is singularly assigned. Nonsingular assignments of X are either empty,
mapping every X:dj to FALSE, or multiple, mapping more than one X:dj to
TRUE. We also use the term Bsingular^ to describe an entire assignment in which

every nb-variable is singularly assigned.

Though nonsingular assignments occur in the unary/unary search space, they

cannot be solutions if all AMO and ALO clauses are included in the encoding.

As domain sizes grow the unary/unary search space becomes dominated by non-

singular assignments. A variable with domain size D has D singular assignments

compared with 2DjD nonsingular assignments. In a problem with V nb-

variables the ratio of nonsingular to singular assignments is raised to the power

of V.
Consider a transition from state S to state S0 in in the search space of F. This

transition changes the value assigned to some variable, X, from value d to a

different value d0. Both S and S0 correspond to singular states in the search space

of the unary/unary transform of F. However, the latter search space contains no

transition between these two states. The shortest paths between these two states

contain two moves: flipping X:d from FALSE to TRUE and flipping X:d 0 from
TRUE to FALSE in either order. A local search procedure operating on the unary/

unary transformation must inevitably move through some nonsingular states

because there are no transitions between two singular states.

Much work on SLS has noted that solution density (the ratio of number of

solutions to number of states in the search space) is one factor influencing the

effectiveness of SLS. An nb-encoding has the same number of solutions as its

unary/unary transform if all ALO and AMO clauses are included. As the unary/

unary encoding generally has many more states, it generally has a lower solution

density. Removing ALO or AMO clauses from a unary/unary encoding

potentially increases the number of solutions without changing the number of

states.

The binary transformation of F contains (lg D1V variables, and hence has

2(lg D1V states; from each there are (lg D1V transitions. If D is a power of 2, then

the non-Boolean states and binary states are in a one-to-one correspondence and,

hence, contain the same number of solutions, same number of states, and same

solution density. However, the (lg D1V transitions from each binary state are a

subset of the (Dj1)V transitions in the corresponding nb-state. If D is not a

power of two, then the binary search space has more states than the nb-search

space. The basic binary encoding has the same number of solutions as the nb-

encoding, but the extended binary encoding potentially has more solutions.

156 ALAN M. FRISCH ET AL.



Notice that if all variables in F have a domain size of 2, then the binary

transform of F is essentially the same as F, and the non-Boolean and binary

search spaces are isomorphic. NB-Walksat operating on F behaves identically to

Walksat operating on the binary transform of F. This equivalence was exploited

in testing the correctness of the NB-Walksat implementation.

The unary/binary transformation of F contains both the variables produced by

the unary/unary transform and those produced by the binary transform, a total of

DV + (lg D1V variables. Its search space is a cross product of the other two search

spaces. More precisely, if we let SU be the states of the unary/unary space and SB
be the states of the binary space, then the states of the unary/binary space are the

cross product of SU and SB. If u and u0 are elements of SU and b and b0 are
elements of SB, then there is a transition from bu, bÀ to bu0, b0À in the unary/binary

space if and only if either (1) b = b0 and there is a transition from u to u0 in the

unary/unary space, or (2) u = u0 and there is a transition from b to b0 in the binary

space.

This discussion raises two questions: Are nonsingular states helpful to the

search, perhaps by providing useful paths to a solution or out of local minima, or

is better performance achieved by restricting search to a smaller space containing

only singular assignments? Does the reduction of transitions that results from

using the binary representation help or hinder the search process?

6. Performance Evaluation

Using four problem domains, this section presents experiments that compare

the performance of the four methods, which we shall refer to as NB (non-

Boolean encoding), UU (unary/unary encoding), EB (enhanced binary encod-

ing), and UB (unary/binary encoding). In all experiments, Walksat version 35

was used to solve the Boolean encodings. The non-Boolean encodings, even in

cases where the domain size is 2, were solved with NB-Walksat; version 4 was

used for the graph coloring problems in Section 6.1 and version 6 was used in

all other experiments. Both Walksat and NB-Walksat provide the user the option

of either compiling the program with fixed-size data structures or allocating the

data structures when the formula is input at runtime; the latter option was used in

all experiments. The random formulas (Section 6.2) and round-robin tournament

problems (Section 6.3) were run on a 700 MHz Athlon with 256 MB of memory.

The quasigroup problems (Section 6.4) were run on an Athlon XP 2400 + 2 GHz

with 512 MB of memory.

Considerable care must be taken in setting the Pnoise parameter for the

experiments. Much work in this area has been reported without giving the value

used for Pnoise, and thus is irreproducible. Setting the parameter to any fixed

value over all formulas is not acceptable; we have observed that a parameter

setting that is optimal for one formula can, in another formula, yield per-

formance that is several orders of magnitude below optimal. The best option

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 157



is to report performance at the optimal setting for Pnoise, which Y in the

absence of any known method to determine this a priori Y we have determined

experimentally. This is also the route followed by Hoos (1998) in his extremely

careful work.

In using SLS procedures it is common practice to restart the search at a new,

randomly selected assignment if the procedure has not found a solution after a

prescribed number of flips. Since the runtime distribution using a restart strategy

is a function of the runtime distribution without restarts, this study need be

concerned only with the performance without restarts.

6.1. GRAPH COLORING

Frisch and Peugniez (2001) report experiments with six instances of the graph

coloring problem. Each problem instance was encoded as a CNF nb-formula.

For each node in the graph the formula uses a distinct variable whose

domain is the set of colors. The formula itself is a conjunction of all

clauses of the form KX/c ¦ KY/c, such that X and Y are a pair of nodes con-

nected by an arc and c is a color. For each instance the domain size of the

variables is the number of colors, which for these six instances is 5, 5, 15, 17,

18, and 25.

Three SAT-encodings of each problem instance were produced by applying

the unary/unary, enhanced binary and unary/binary transforms. Since the nb-

encodings are negative, AMO clauses were omitted from the UU and UB

encodings, as justified by Corollary 1. Also note that because the nb-encodings

are negative, the enhanced binary transform maps each nb-clause to a single b-

clause (as discussed at the end of Section 4.2).

Frisch and Peugniez’s experiments reveal that NB and UU are effective

on all six instances and have roughly comparable solution times (within a

factor of 2 to 3). On the two problem instances with domain size five, the

three transformation methods equaled or outperformed the direct method.

However, on each of the other four instances (domain size 15 to 25), the

direct method equaled or bettered each of the transformation methods. Of these

same four instances, UB was ineffective on three and EB was ineffective on

two.

Overall, their graph-coloring experiments show that with increasing

domain size, NB scales much better than both UB and EB and slightly better

than UU.

6.2. RANDOM NON-BOOLEAN CNF FORMULAS

Since we can control certain parameters in the generation of random CNF nb-

formulas, they provide a good testbed. In particular, since this paper is a study of

solving problems with domain sizes greater than two, we would like to know

158 ALAN M. FRISCH ET AL.



how problem-solving performance varies with domain size. To measure this we

need to select problem instances that have different domain sizes but are

otherwise similar. Formulating a notion of Botherwise similar^ has been one of

the most stubborn problems faced by this research.

We have developed a program that generates random, positive CNF nb-

formulas using five parameters: N, D, C, V, and L. Each generated formula

consists of exactly C clauses. Using a fixed set of N variables each with a domain

size of D, each clause is generated by randomly (with uniform distribution)

chasing V distinct variables and then, for each, randomly (with uniform

distribution) choosing L values from its domain. Each of the chosen variables

is coupled with each of its L chosen values to form L I V positive literals, which

are disjoined together to form a clause.

The simplest conjecture on how to study varying domain size is to

fix the values of N, C, V, and L and then to systematically vary D. One can

see that performance on this task would exhibit typical phase-transition

behavior (Mitchell et al., 1992): small values of D would produce under-

constrained instances, which would become critically-constrained and then over-

constrained as D increases. The problem instances generated by this method

would not be similar in terms of their location relative the solubility phase

transition.

Our solution to this shortcoming is to vary D and to adjust the other four

parameters so as to put the problem class at the solubility phase transition Y that

is, at the point where half the instances in the class are satisfiable. But for any

given value of D many combinations of values for N, C, V, and L put the problem

class at the phase transition.

Our first attempt to solve this was based on the idea of keeping the problem

size constant. With each formula consisting of 1,000 clauses, each with three

literals, we experimentally determined the appropriate value of N to put the

problem class at the phase transition. As we later discovered, this approach is

faulty, a consequence of the somewhat counterintuitive observation that the

appropriate value of N grows fairly rapidly with D. A problem instance with

1,000 clauses of three literals is at the phase transition if it has 1,031 variables

with domain size 64. Such a problem instance contains only 3,000 literal

occurrences drawn out of the possible 65,984 atoms (1031 � 64). That is, only

about one in 21 of the possible atoms occur in the formula; so, on the average,

each variable occurs with only about three of its 64 possible values. Since the

problem instance has all positive literals, each variable has, in effect, a domain

size of approximately 3. Even for a problem with domain size 8, about half of the

possible atoms do not occur in a random problem instance.

The solution we have adopted is to keep DN, the size of the search space,

at a fixed value for all problem instances and then requiring all clauses to have

the same Bconstrainedness,^ as measured by (L/D)V. Mimicking Boolean 3CNF,

we set V to three and aim to keep (L/D)V at 1/8, which is achieved by setting L to

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 159



D/2. This follows the constant length model advocated by Mitchell et al. (1992).

Finally C is set to whatever value puts the problem class at the solubility phase

transition. Thus, while varying D, the parameters that we are holding constant are

search space size, the number of variables constrained by each clause and the

amount of constraint placed on each, and the proportion of instances with that

parameter setting that are solvable.

Our experiments were conducted on domain sizes of 2, 4, 8, 16, and 32.

Following the model above we kept DN at a constant value; 260 was chosen since

260 ¼ 2N2 ¼ 4N4 ¼ 8N8 ¼ 16N16 ¼ 32N32 if N2 = 60, N4 = 30, N8 = 20, N16 = 15

and N32 = 12. Then for each domain size, we used NB-Satzj (Stock, 2000) to

experimentally locate the point of the phase transition The leftmost column of

Figure 3 shows the value of C (number of clauses) at which these experiments

located the phase transitions.

With the parameters of the random formulas determined, at each domain size

we generated a series of random formulas according to the above method and

kept the first 101 satisfiable ones as identified by NB-Satz. At each domain size,

1,001 attempts were made to solve the suite of 101 formulas with the NB, UU, and

UB methods. By Corollary 1 positive CNF nb-formula can be transformed to a b-

formula without the ALO formulas. Since our randomly generated formulas are

Figure 3. Results, to no more than three significant figures, for a suite of 101 satisfiable

non-Boolean CNF formulas chosen at random. The values recorded in the flips and time

column are the flips and time required to solve a single formula, not the entire suite. On

those rows missing entries, the median number of flips to solution of 101 runs at noise levels

0.01, 0.02, and 0.03 all exceeded 5,000,000.

j Satz (Li and Anbulagan, 1997) is an implementation of the DPLL algorithm (Davis et al.,

1962) for deciding Boolean satisfiability. NB-Satz generalizes Satz to handle non-Boolean

formulas. Satz and other Boolean decision procedures are incapable of solving these random

instances with large domain size.

160 ALAN M. FRISCH ET AL.



positive, the unary/unary and unary/binary encodings that are used here contain

only kernels and AMO formulas.

The results of these experiments,j as shown in Figure 3, consistently follow a

clear pattern. At all domain sizes, in terms of both time and number of flips, NB

outperforms UU, which in turn outperforms UB. All the methods show a decline

in performance as domain size grows. The decline is so sharp for the

transformation methods that UB is ineffective on domain size 16, and UU is

two orders of magnitude slower than NB on domain size 32. On these random

formulas, as on the graph coloring problems, the flip rates of all methods

decline with increasing domain size.

Results on the EB method are reported only for domain size 2 since at larger

domain sizes the enhanced binary transformation produces unreasonably large

formulas. As discussed at the end of Section 4.2, if the enhanced binary

transform is used to produce a CNF b-formula from a positive CNF nb-formula,

the size of the resulting b-formula is exponential in the clause length of the

original nb-formula-which in this case is 3
2
D. With a domain size of 4 the

transformation produces a b-formula with 319,488 atoms (which Walksat cannot

solve even with hours of CPU time) and with a domain size of 8, the b-formula

has over 5 I 109 atoms. Finally, recall (from Section 4.2) that applying the binary

transform to an nb-formula of domain size 2 results in an essentially identical

Boolean formula. Hence at domain size 2, the only difference between the NB

and EB methods are that NB uses NB-Walksat and EB uses Walksat. The results

in the table show that for these random formulas NB-Walksat’s flip rate is 61%

of Walksat’s flip rate; this slow down is the overhead incurred by the generality

of NB-Walksat. It should be noted that the amount of overhead could be quite

different on problems with other characteristics.

6.3. ROUND-ROBIN TOURNAMENT SCHEDULING

The round robin tournament scheduling problem appears as problem 26 in

CSPLib (Gent and Walsh, ), where it is specified as follows:

The problem is to schedule a tournament of n teams over nj1 weeks, with

each week divided into n/2 periods, and each period divided into two slots.

The first team in each slot plays at home, whilst the second plays the first team

j The experiments reported here improve upon similar ones reported by Frisch and
Peugniez (2001). Here we correct a faulty Pnoise setting (that for UU at domain size 4), use
larger test suites (101 instances each, instead of 25), and use more sample more runs (1,001

instead of 101). The median flips to solution is generally higher in these experiments than in
the previous ones. We believe that this is a consequence of using larger test suites. Since the
Pnoise parameter is set to optimize performance over the entire suite, it more closely fits the

optimal settings of the instances in a small suite than those in a large suite. To see this, just
consider a one-instance suite and a two-instance suite.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 161



away. A tournament must satisfy the following three constraints: (1) every

team plays once a week; (2) every team plays at most twice in the same period

over the tournament; (3) every team plays every other team.

An example schedule for eight teams is as follows:

Before proceeding it is worth observing a constraint that is implied by the

given ones. Since a team plays exactly nj1 times and at most twice in each of

the n/2 periods, it follows that a given team plays twice in all but one period and

in the remaining period it plays once.

We use two general approaches to encoding this problem in NB-SAT. In the

singleton approach the domains of the variables are the teams, so each match is

represented by a pair of variables. In the pairwise approach the domains of the

variables are unordered pairs of teams, so each match is represented by a single

variable.

To aid conceptualization, we define three macros for producing sets of NB-

formulas. Let Vars be a set of nb-variables and Atoms be a set of m nb-atoms.

Then ALLDIFF(Vars) is true if and only if every variable in Vars is assigned a

different value; AM2(Atoms) is true if and only if at most two of the atoms in

Atoms is true; and AL2(Atoms) is true if and only if at least two of the atoms in

Atoms is true. The AL2 macro works by asserting that for every mj1 atoms

chosen from Atoms at least one of the mj1 is true.

ALLDIFF Varsð Þ ¼def
:v1=d _ :v2=d v1; v2f g � Vars; d 2 dom v1ð Þ \ dom v2ð Þjf gj

AM2 Atomsð Þ¼def :a1 _ :a2 _ :a3 a1; a2; a3f g � Atomsjf g
AL2 Atomsð Þ¼def a1 _ a2 _ 
 
 
 _ am�1 a1; . . . ; am�1f g � Atomsjf g

ALLDIFF(Vars) comprises
P

v1;v2f g�Vars dom v1ð Þ \ dom v2ð Þj clauses, each

containing two literals. AM2(Atoms) comprises m(mjl) (mj2)/6 clauses, each

containing three literals, and AL2(Atoms) comprises m clauses, each containing

mj1 literals.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 8 vs. 1 8 vs. 2 4 vs. 7 3 vs. 6 3 vs. 7 1 vs. 5 2 vs. 4

Period 2 2 vs. 3 1 vs. 7 8 vs. 3 5 vs. 7 1 vs. 4 8 vs. 6 5 vs. 6

Period 3 4 vs. 5 3 vs. 5 1 vs. 6 8 vs. 4 2 vs. 6 2 vs. 7 8 vs. 7

Period 4 6 vs. 7 4 vs. 6 2 vs. 5 1 vs. 2 8 vs. 5 3 vs. 4 1 vs. 3

j The notation {v1, v2} � Vars means that a two-element subset is selected from Vars and,

without loss of generality, the two elements are arbitrarily named v1 and v2.

162 ALAN M. FRISCH ET AL.



6.3.1. Singleton Approach

For each period p and each week w we use a pair of variables, bXp,w, Yp,wÀ to
represent the pair of teams that play against each other in period p during week

w. We consider the n teams to be denoted by the integers 1 to n, hence the

domain of every variable is {1,. . . , n}. By symmetry and the fact that a team

cannot play itself, we can limit our search to solutions in which Xp,w takes a

value that is strictly less than that of Yp,w. Hence, the domain of each Xp,w is

{1,. . . , njl} and the domain of each Yp,w is {2,. . . , n}. Furthermore, our

encoding of the problem includes a symmetry-breaking constraint, which asserts

that the value of Xp,w is strictly less than that of Yp,w. As we shall see, the

inclusion of the symmetry-breaking constraints allows one of the other con-

straints to be stated much more compactly with the overall effect of producing a

more compact encoding of the entire problem.

Hence to represent the four team problem we use 12 variables as follows:

where each Xp,w has domain {1, 2, 3} and each Yp,w has domain {2, 3, 4}.
There are many ways to encode in NB-SAT the three constraints of the

original problem statement and the symmetry-breaking constraint. Here we

present one way of handling each of the problem constraints and two ways of

handling the symmetry-breaking constraint.

(1) Every team plays once a week. Since there are n slots each week and there

are n teams, it suffices to stipulate that each team plays at most once in each

week. For each week w, we use the formula

ALLDIFF Xp;w p 2 periodsj � [ Yp;w p 2 periodsj �� � ðs1Þ
Each instance of ALLDIFF generates W(n3) clauses of size two. Overall, W(n4)
clauses are generated.

(2) Every team plays at most twice in the same period over the tournament.
For any team t, for every period p we have the clauses

AM2 Xp;w

�
t w 2 weeks; t 6¼ nj � [ Yp;w

�
t w 2 weeks; t 6¼ 1j �� � ðs2Þ

The restrictions t m n and t m 1 prevent the set comprehensions from generating

the atoms Xp,w / n and Yp,w / 1, respectively, both of which are ill-formed because

the specified value is not in the domain of the specified variable. Each instance of

AM2 generates W(n3) clauses of size three. Overall, W(n5) clauses are generated.

Week 1 Week 2 Week 3

Period 1 X1,1 vs. Y1,1 X1,2 vs. Y1,2 X1,3 vs. Y1,3
Period 2 X2,1 vs. Y2,1 X2,2 vs. Y2,2 X2,3 vs. Y2,3

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 163



(3) Every team plays every other team. This constraint can be obtained by

stipulating that no two teams play each other twice. For any two distinct weeks,

w and w0, and any teams t and t0 such that t < t0 and any periods p and p0 we have
the formula

:Xp;w=t _ :Xp0;w0=t _ :Yp;w=t0 _ :Yp0;w0=t0 ðs3Þ
We need to consider only teams t and t0 such that t < t0 because the symmetry-

breaking constraint ensures that in every solution Xp,w has a strictly smaller value

than does Yp,w. Furthermore, because of the symmetry-breaking constraint, we

need enforce only bXp,w, Yp,wÀ m bXp0,w0, Yp0,w0À, and not bXp,w, Yp,wÀ m bXp0,w0, Yp0,w0À.
Each of these considerations halves the number of clauses needed to impose this

constraint. Attention can be restricted to distinct weeks since no team plays more

than once in the same week. This encoding produces W(n6) clauses, each with

four literals. As we will see, the symmetry-breaking constraint is encoded far

more compactly than the present constraint, so using the symmetry-breaking

constraint enables a smaller encoding of the entire problem.

Symmetry breaking. The symmetry-breaking constraint requires that for each

period p and each week w the value of Xp,w is strictly less than that of Yp,w.
Notice that this also enforces the constraint that no team ever plays itself. We

consider two ways to encode this constraint.

The first encoding, called lopsided, states that if Xp,w has value t then Yp,w has

a value strictly greater than t. The value of Xp,w implies a restriction on the value

of Yp,w. For every team t such that 2 e t e nj1 and every period p and every

week w we have the clause

:Xp;w=t _ Yp;w=tþ 1 _ Yp;w=tþ 2 _ 
 
 
 _ Yp;w=n: lopsidedð Þ

This encoding generates W(n3) clauses ranging in size from 2 to nj1 literals.

The second encoding, called negated, states that Xp,w and Yp,w cannot take on

any pair of values that results in Yp,w being less than or equal to Xp,w. For every

two teams t and t0 such that 2 e t e t0 e nj1 and every period p and week w we

have the clause

:Xp;w=t
0 _ :Yp;w=t negatedð Þ

This encoding produces W(n4) clauses, each containing two literals.

Béjar and Manyá have experimented with two singleton encodings. In one

paper (Béjar and Manyà, 1999b) they use the constraints sl, s2, s3, and lopsided.

In another paper (Béjar and Manyà, 2000) they use a UU encoding of the

constraints s1, s2, s3, and negated. In this UU enoding they added ALO clauses

but no AMO clauses.

We experimented with two nb-encodings of the problem. The first encoding

uses s1, s2, s3, and negated. The unary/unary transformation was applied to

164 ALAN M. FRISCH ET AL.



produce a Boolean encoding. As the original nb-formula is negative, ALO

clauses are included in the UU encoding, but AMO clauses are omitted. Figure 4

shows the results of 1,000 runs each on the UU and NB encodings for 6, 8, and

10 teams.

The second encoding uses s1, s2, s3, and lopsided. The unary/unary

transformation was applied to produce a Boolean encoding. As the original nb-

formula is neither negative nor positive, both ALO and AMO clauses are

included in the UU encoding. Figure 5 shows the results of 1,000 runs each on

the UU and NB encodings for 6, 8 and 10 teams.

Figure 4. Round robin formulated with s1, s2, s3, negated and ALO. The domain size (DS)
is one less than the number of teams. Sample size is 1,000.

Figure 5. Round robin formulated with s1, s2, s3, lopsided, ALO and AMO. The domain

size (DS) is one less than the number of teams. Sample size is 1,000.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 165



The two tables exhibit similar patterns. NB requires fewer flips to solve the

problem instances, and its advantage over UU grows as the domain size

increases, markedly so for the lopsided encodings. Both figures show that UU has

a significantly higher flip rate; consequently UU has a slightly faster solution

time in the negated encodings. However, since UU scales so poorly with the

lopsided encodings, NB has a time advantage here and its advantage grows as the

domain size grows. No results are given for UB or EB as there are ineffective on

these instances.

6.3.2. Pairwise Approach

The pairwise approach uses a single variable XYp,w for each period p and week w.
The domain of each variable is the set of all unordered pairs of distinct teams.

We shall refer to this set of values as matches and note that it has n(nj1) / 2

elements. We shall also write matches(t) to denote those pairs in matches that

contain team t and note that for all t this set contains nj1 elements. Hence to

represent the four-team problem we use six variables as follows:

where each XYp,w has the domain:

matches ¼ 1; 2f g; 1; 3f g; 1; 4f g; 2; 3f g; 2; 4f g; 3; 4f gf g
Also, to illustrate the notation, matches(2) = {{1, 2}, {2, 3}{2, 4}}.

We now present a single encoding of each of the three problem constraints.

(1) Every team plays once a week. Unlike the singleton approach, we impose

this constraint by saying that each team plays at least once each week. For every

week w, for each team t we have the following clause:

_
p 2 periods; m 2 matches tð Þ

XYp;w
�
m ðp1Þ

This encoding produces W(n2) clauses, each of length W(n2).

(2) Every team plays at most twice in the same period over the tournament.
To impose this constraint we add an Bimaginary^ extra week and write weeks+ to
denote the expanded set of weeks. It follows that over the course of n weeks+ a

team plays at most twice in the same period if and only if it plays at least twice in

the same period. For each period p for each team t we have the following

formula:

AL2 XYp;w
�
m m 2 matches tð Þ;w 2 weeksþj �� � ðp2Þ

Week 1 Week 2 Week 3

Period 1 XY1,1 XY1,2 XY1,3
Period 2 XY2,1 XY2,2 XY2,3

166 ALAN M. FRISCH ET AL.



Each instance of AL2 produces W(n2) clauses each with W(n2) literals. Overall,
this produces W(n4) clauses.

(3) Every team plays every other team. In the pairwise approach it is

straightforward to stipulate that every pair of teams at least once. This can be

done with one clause for each m in matches:

_
p2 periods; w2weeks

XYp;w
�
m ðp3Þ

This yields W(n) clauses, each containing W(n2) literals.
We experimented with the NB encoding of p1, p2, and p3, and the UU

transform of this. As the NB encoding is neither positive nor negative, the

UU encoding contains both ALO and AMO clauses. Figure 6 shows the

results of 1000 runs each on the NB encodings for 6, 8, 10, and 12 teams, and the

UU encoding for six teams. Beyond six teams, the UU encoding is ineffective

and the UB and EB encodings are ineffective even for six teams. Indeed, the

Boolean encodings rapidly become prohibitively large as the number of teams

increase. However, the NB method is highly effective and easily the best of all

the solution methods considered in this section. Here we see that with large

domain sizes, NB can be the only effective solution method.

Figure 6. Round robin formulated with p1, p2 and p3. The domain size (DS) is n(nj1) / 2,

where n is the number of teams. The sample size is 1,000.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 167



6.4. THE QUASI-GROUP COMPLETION PROBLEM

A quasi-group (also called a Latin squarej) of order n is an n � n table of

symbols. There are n symbols and each symbol occurs exactly once in each row

and column of the table. Therefore each row and each column are permutations

of the symbols.

Generating a quasi-group of order n is trivial and can be done in O(n2) time.

However, completing a quasi-group that is partially filled is an NP-complete

problem (Colbourn, 1983). This is known as the quasi-group completion problem

(QCP). For a fixed n, as the number of unfilled slots (or holes, h) increases, QCP
exhibits both a phase transition from unsatisfiable to satisfiable and an easy-hard-

easy pattern of solvability (Gomes and Selman, 1997).

In order to evaluate local search procedures with QCP, the instances must

be filtered with a systematic search procedure so that the only satisfiable ones

remain. Achlioptas et al. (2000) found generating QCP instances and filtering with

a complete search procedure too compute-intensive. They suggest generating

complete quasi-groups then emptying some of the slots to create h holes.

Problems generated this way are clearly guaranteed to be satisfiable, so they do

not have traditional phase-transition behavior. However, they do retain the easy-

hard-easy pattern with increasing h. This method of generating QCP instances is

referred to as quasi-group with holes (QWH). QWH does include all satisfiable

QCP instances; however Kautz et al. (2001) observe that it is biased away from

the uniform distribution of satisfiable instances because QWH can generate the

same QCP instance from a variable number of complete quasi-groups.

Empirically, the most difficult QWH instances are found where h = 1.6n1.55

(Achlioptas et al., 2000). This result follows from observation of the performance

of Walksat on the unary/unary transform with ALO clauses.

6.4.1. Generating QWH Instances

For each order size n 2 {4, 8, 12, 16, 20}, we generated a suite of 25 QWH

instances. We used the lsencode v1.0 software (Gomes et al., 2001) to

systematically generate a complete quasi-group instance and then shuffle it

10,000 times. This gives a uniform distribution over all complete quasi-groups of

order n. Using lsencode, 1.6n1.55 holes were then poked in the quasi-group by the

random method.

6.4.2. The Non-Boolean Encoding

We used our own program, PLS-NB, to encode each of the generated QWH

instances as an NB-formula. We initially encoded each instance with n2

j A quasi-group is a group whose multiplication table is a Latin square. However, in the

AI community the table is commonly referred to as the quasi-group.

168 ALAN M. FRISCH ET AL.



variables, one for each entry in the quasi-group table. For each row and column,

the variables must be assigned a permutation of the values. For a row or column

containing variables, it is sufficient to assert that each value appears at least once

in variables, since this entails that each value appears exactly once. For each row

or column containing variables, and each symbol s we have the clause

_
A2 variables

A=s ð4Þ

For each variable A that corresponds to a filled entry in the table (i.e., not a hole),

we add the unit clause A/s, where s is the symbol that fills the entry. This gives us

a CNF NB-formula that encodes the QWH instance.

This NB representation is then simplified by performing unit propagation. To

propagate the unit clause A/s, all other clauses containing the variable A are

processed with one of two rules:

Y Unit subsumption applies to a clause C containing A/s. The unit clause

logically subsumes C, so C is removed from the formula.
Y Unit resolution applies to a clause C containing A/t, where t m s. The literal

A/t is removed from C because (A/t ¦ �) $ (A/s) entails �.

Unit propagation is performed to closure, after which all unit clauses are deleted

from the NB formula.

The variables remaining in the formula correspond to the holes in the

QWH instance. The domains of these variables typically contain fewer than

n values and can vary from variable to variable. For each suite Figure 7 shows

the mean domain size (MDS) of the NB encodings for each suite of QWH

instances.

It is possible to simplify QWH instances much more than the unit

propagation that we have done. For example, before encoding an instance

into NB-SAT, one could consider the instance as a clique of disequalities for

each row and column and perform arc-consistency. Or even stronger, one

could consider an instance as an alldifferent constraint for each row and

column and perform generalized arc-consistency (Kautz et al., 2001; Shaw

et al., 1998). Unfortunately, both of these simplifications reduce the domains of

the variables so effectively, that all reasonably sized problems have small

domains. For example, consider simplifying the instances with arc-consistency

(as explained above) and then with unit propagation (as we have done). Then our

suite of 25 instances for order 4 has a mean domain size of 2.84; for order 16 it is

3.85; and for order 20 it is 4.09. As such it is impossible to investigate the effect

of increasing domain size because the problem instances become too hard for

large n. Since we are interested in producing a useful testbed, not with solving

the problem as fast as possible, we preprocess by unit propagation only.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 169



6.4.3. The Boolean Encodings

In addition to the NB-encoding, three Boolean transforms of the non-Boolean

formula are considered: UU, UB and EB. As the NB encodings are all positive,

no ALO clauses are included in the UU or UB encodings.

Kautz et al. (2001) use two other Boolean encodings, which we (but not they)

now describe as Boolean transforms of non-Boolean encodings. In both

encodings they preprocess the instance by performing generalized arc-consisten-

cy as described above. In the encoding they call B2D^ they do not use (4), but

instead impose ALLDIFF(variables) on each row and column. Finally they apply the

unary/unary transform, including ALO clauses, but not AMO clauses. In their

B3D^ encoding they impose both (4) and ALLDIFF(variables) on all rows and

Figure 7. Performance on quasigroup with holes.

170 ALAN M. FRISCH ET AL.



columns. Finally, they apply the unary/unary transform, including both ALO and

AMO clauses.

6.4.4. Results

Once again, we treat the process of solving an entire suite as a single sample

execution. For each solution method, for each test suite, the optimal Pnoise setting

eas experimentally determined. These are shown in Figure 7. However, using a

cutoff of 400 seconds (for the suite), EB could not solve the suites with n Q 8 and

UB could not solve those with n Q 12.

In particular, EB made nine attempts to solve the order 8 suite at each of the

Pnoise settings 0.4, 0.45, 0.5, 0.55 and 0.6. None of the attempts completed the

suite in 400 seconds; the most successful was Pnoise = 0.45, which completed the

first 12 instances on one of its runs. Thus, a Pnoise setting of 0.45 is recorded in

Figure 7, with an asterisk to indicate that this is a special situation.

UB made nine attempts to solve the order 12 suite at each of the Pnoise settings

0.05, 0.1, 0.15, 0.2, and 0.25. Themost successful wasPnoise = 0.1, though not all of

its runs completed within the cutoff of 400 seconds. Thus a Pnoise setting of 0.10

is recorded in Figure 7, with an asterisk to indicate that this is a special situation.

For all the other methods and suites, 101 runs were performed and all com-

pleted within the 400 seconds limit. The results are shown in Figure 7, where the

flips and time measurements are reported per instance (i.e., the measurements for

the suite are divided by 25). The order 4 suite was solved so fast that a reliable

measure of CPU time could not be obtained; thus no flip rates or times are given.

The results reported in Figure 7 show that the performances of EB and UB

scale poorly as domain size increases. EB is competitive for order 4 instances

(MDS = 3.93), but not for order 8 (MDS = 7.01). UB is effective, though

substantially inferior to NB and UU for instances of order 4 and 8; it is

ineffective for order 12 instances (MDS = 9.46).

The results also show that both UU and NB remain effective for instances of

order 20 (MDS = 13.52), though NB is superior to UU, and its superiority grows

as domain size increases.

7. Related Work

This section considers related work, first work on solving problems without

encoding, then work on the direct approach and finally work on the

transformational approach.

7.1. SOLVING PROBLEMS WITHOUT ENCODING

A substantial body of work takes a purely direct approach by applying local

search directly to a problem, for example, to vehicle routing (Shaw, 1998). This

typically involves the overhead of building a domain-specific solver from

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 171



scratch, but allows the development of problem-specific neighborhoods and

heuristics. Brafman and Hoos (1999) show that for planning problems this

approach can result in a solver that is more efficient than encoding and solving

with SAT. Recent work on the development of the COMET system (Van

Hentenryck and Michel, 2003) shows that generic facilities, such as incremental

data structures, can be provided to ease the development of domain-specific local

search systems.

The advantage of encoding a problem into SAT or NB-SAT is that developing

an effective encoding is likely to be less difficult than implementing a problem-

specific local search procedure. This is demonstrated by the continuing increase

in the number of problems that can be solved effectively by applying both

systematic and SLS solvers to encodings of the problems.

7.2. OTHER WORK ON THE DIRECT APPROACH

As far as we know, only one other group has worked on a direct approach to

solving non-Boolean satisfiability problems with stochastic local search. Bejar

and his colleagues (Béjar, 2000; Béjar and Manyà, 1999a; Béjar and Manyà,

2000; Béjar et al., 2001) have generalized GSAT, Walksat, and some of their

variants to operate directly on regular formulas of finitely valued logic. In

regular formulas all variables have the same finite, totally ordered domain, which

for the sake of presentation is usually taken to be {1,. . . , n}.j A regular literal is

of the form ji:X or ,i:X where i its a domain element and X is a variable.

Assignments in regular SAT are the same as those in NB-SAT. An assignment

satisfies ji:X if the value assigned to X is at least i; it satisfies ,i:X if the value

assigned to X is at most i. A regular CNF formula is a conjunction of disjunctions

of regular literals. Negation is not used in regular CNF; nor is it needed as the

negation of ji:X (resp. ,i:X) is logically equal to ,(ij1):X (resp. j(i + 1):X).
The NB-Walksat and RegularYWalksat algorithms can be seen as having only

two differences. The first is that instead of step (g) (see Figure 1),

RegularYWalksat uses

(g0) From among the variables that appear in L select one at random. Call it X.
Let D be the set of values such that flipping X to that value would satisfy the

clause. Randomly select a member of D and call it d.

The second difference is that the published descriptions of RegularYWalksat do

not specify distributions for the random selections made in steps (d) or (g0).
Assuming that all selections are made with uniform distribution, in certain

situations (g) and (g0) can choose among flips with different distributions. To see

j Here we stick with the terminology of this paper. Their presentation uses the

terminology of multivalued logic.

172 ALAN M. FRISCH ET AL.



this, consider two variables, X and Y, each with domains {1, 2, 3}. Then the nb-

clause X/2 ¦ X/3 ¦ Y/3 is logically equivalent to the regular clause j2:X ¦ j3:Y.
If these clauses are false, then each could be Brepaired^ by one of three flips: X to

2, X to 3 or Y to 3. In a noisy move, NB-Walksat would chose each flip with

probability l/3, whereas RegularYWalksat would choose between X and Y
with probability l/2 and, if X were chosen it would chose between 2 and 3 with

probability l/2. Hence, Regular Walksat would choose among the three flips with

probability l/4, l/4 and l/2, respectively. This situation could arise only if a

problem has a clause in which different variables participate in a different

number of repairing flips. Of all the formulations considered in Section 6, this

situation arises only in the lopsided and pairwise formulations of the round-robin

problem.

If we ignore the issue of distributions, NB-Walksat and RegularYWalksat are

functionally equivalent in the following sense. Let Creg = C1, . . . , Cn be a set of

regular clauses and CNB = C1
0, . . . , Cn

0 be a set of NB-clauses. If Ci and Ci
0 are

logically equivalent for 1 e i e n, then the set of runs available to

RegularYWalksat running on Creg is the same as those available to NB-Walksat

running on CNB.

How do the NB and regular languages compare in terms of their ability to

represent problems and solve them with NB-Walksat and RegularYWalksat?

Considering the equivalence between the algorithms, this issue hinges on the

relative expressiveness of NB-clauses and regular clauses.

Regular clauses can be transformed easily to NB-clauses by replacing each

occurrence of ji:X (resp. ,i:X) with _j>iX=j (resp. _j< iX=j ). Going the other

way, negative NB-clauses can be transformed easily to regular clauses by

replacing each occurrence of KX/i with j(i + 1):X ¦ ,(ij1):X. However, non-
negative NB-clauses are not, in general, equivalent to any regular clause. The

unit clause X/i is equivalent to ji:X $ ,i:X, but it is not equivalent to any

regular clause. Consequently, NB-Walsksat is capable of all the behaviors that

RegularYWalksat is, but not vice versa. To be clear, the issue is not that

RegularYWalksat lacks capabilities; rather, it is that regular-CNF is not

sufficiently expressive.

Of course, every nonnegative NB-formula �NB in CNF is logically equivalent

to some regular formula �reg (by the correspondences mentioned in the last

paragraph) and �reg can be transformed to a CNF formula �reg
0 by distributing

disjunctions over conjunctions. �NB and �reg
0 will be logically equivalent, though

generally they will not correspond clause by clause. Indeed, �reg may be

unreasonably large. For this reason, RegularYWalksat is typically ineffective on

encodings that correspond to negative NB-formulas in CNF. The two problems

used in the RegularYWalksat experiments of Béjar and Manyà (2000) use

negative encodings: graph coloring using the encoding of Section 6.1 and round-

robin tournament scheduling using clauses s1, s2, s3, and lopsided of Section

6.3.1. The most effective round-robin encoding, the pairwise one, uses both

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 173



negative and positive clauses and is therefore ill-suited for RegularYWalksat.

Again, the shortcoming is not with the RegularYWalksat algorithm; it is that this

nonnegative encoding cannot be expressed in regular CNF.

An obvious difference between NB-SAT and regular SAT is that regular SAT

uses a totally ordered domain. One consequence is that in representing inequal-

ities, regular CNF can be more compact. For example, the lopsided symmetry-

breaking constraint of Section 6.3.1 can be represented by the regular formula

" tþ 1ð Þ:Xp;w _ # t� 1ð Þ:Xp;w _ " tþ 1ð Þ:Yp;w
A second consequence is that RegularYWalksat is able to exploit this

compactness in its internal data structures. This, in effect, is a benefit that

accrues from the limited expressiveness of regular clauses.

7.3. OTHER WORK ON THE TRANSFORMATIONAL APPROACH

Let us now turn our attention to related work on using the transformation

approach to solving problems with SLS on Boolean SAT. Among the numerous

problems attacked with this approach are the nqueens problem (Selman et al.,

1992), graph coloring (Selman et al., 1992; Hoos, 1998), the quasi-group

completion problem (or quasi-group with holes) (Kautz et al., 2001; Achlioptas

et al., 2000; Béjar et al., 2001), the all-interval-series problem (Hoos, 1998; Béjar

et al., 2001), the Hamiltonian circuit problem (Hoos, 1998; Hoos, 1999), random

instances of the finite-domain constraint satisfaction problem (Hoos, 1998; Hoos,

1999; Gent, 2002), the round-robin tournament problem (Béjar and Manyà,

2000), and planning (Kautz and Selman, 1992; Kautz and Selman, 1996; Kautz

et al., 1996; Ernst et al., 1997; Hoos, 1998; Brafman and Hoos, 1999). Despite

this widespread use we know only three studies, other than our own, that have

compared the performance of SLS on different SAT encodings of non-Boolean

variables; we discuss these below. Other than these three comparative studies, all

work cited above uses the unary/unary encoding. As far as we know, our work is

the first to use or mention the unary/binary encoding.

We preface our discussion of the three studies by noting that no work we

know of considers the SAT-encoding process as two mappings, one from the

problem to NB-SAT and then a second from NB-SAT to SAT.j Researchers

who take the single-stage viewpoint often overlook some encodings. For

example, from our viewpoint, we might see that a study considers three ways

of mapping a problem to NB-SAT, and produces four SAT encodings by

applying the unary/unary transform to all three but the binary transform to only

one. A similar oversight sometimes occurs in considering the inclusion/exclusion

j The nearest exception is that Hoos (1998, 1999) maps the Hamiltonian Cycle Problem to
SAT by mapping it first to the constraint satisfaction problem and then mapping this to SAT.

174 ALAN M. FRISCH ET AL.



of ALO and AMO clauses. To aid presentation, we shall adopt the two-stage

viewpoint in the following discussion.

Hoos (1998; 1999) compares the performance of Walksat using the basic

binary and unary/unary encodings of random instances of the Hamiltonian cycle

problem (HCP) and of the finite-domain constraint satisfaction problem (CSP).

The CSP instances are mapped to NBSAT using the well-known Bdirect
encoding.^ The HCP instances are first mapped to CSP, and then treated the

same as the CSP instances. In both test sets, the NB-SAT encoding is negative;

nonetheless, all the unary/unary encodings include both ALO and AMO clauses.

The experiments show that the unary/unary encodings can be solved with fewer

flips than the basic binary encodings; about seven times fewer in CSP and 1.5

times fewer in the HCP.

Ernst et al. (1997) systematically study eight Boolean encodings for the

STRIPS-style planning problem. Over an unidentified suite of 23 instances of the

planning problem, they compare the size of each encoding and the average time

that Walksat takes to solve each encoding. The eight encodings they explore are

systematically generated by selecting one of two frame axioms (called classical

and explanatory) and one of four action representations (called regular, simple

splitting, overloaded splitting and bitwise). The regular, simple splitting, and

overloaded splitting encodings are three ways of representing the choice of

actions and all three employ a unary/unary encoding. The bitwise action

representation is not truly a different action representation; it is a binary

encoding of the regular action representation. Thus, in terms of encoding non-

Boolean variables, their study makes two relevant comparisons: between the

classical/regular and the classical/bitwise encodings and between the explanato-

ry/regular and explanatory/bitwise encodings. Ernst, Millstein, and Weld are

keenly aware that the unary/unary encoding does not always need ALO and

AMO formulas, and they pay particular attention to creating and identifying

opportunities for omitting them. Though their binary encoding is not specified,

their claim that it has no extraneous values means that it is the enhanced version

or something similar. On the whole, it appears that each unary/unary encoding

generally outperforms the corresponding binary encoding, but, as Ernst, Millstein,

and Weld note, the Btiming data is hard to interpret.^
Prestwich (2004) considers seven SAT-encodings of the graph coloring

problem. From our point of view these use four ways of mapping coloring to

NB-SAT. Three of these are mapped to SAT using solely the unary/unary

transform. The fourth, which is based on conflict clauses, is the one of interest

here as it is mapped to SAT in four ways: (UULM) unary/unary with ALO and

AMO, (UUL) unary/unary with ALO, (BB) basic binary, and (EB) enhanced

binary. On a suite of 30 coloring instances with between 4 and 49 colors, each

encoded in seven ways, he tests the performance of Walksat with the best

heuristic. He observes that in no instance does EB require more flips on average

than BB. And in almost all instances UUL requires fewer flips on average than

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 175



UULM. Since EB and UUL encodings admit more solutions than the BB and

UULM encodings, respectively, these results are consistent with the hypothesis

that higher solution density (solutions divided by number of possible assign-

ments) tends to yield better performance for SLS. A surprising result of the

experiments is that the EB and BB encodings performed much better than one

would have expected from the previous work of us and others. The puzzling

pattern presented by the literature on the whole is that EB and BB sometimes

perform quite well and other times very poorly. Our conjecture is that these two

encodings do not perform well on intrinsically hard instances. Prestwich’s

instances are mostly much easier than the ones we used for coloring and other

problems. On the hardest instances of his, EB and BB perform poorly. On three

of the four easiest graph coloring instances tested by Frisch and Peugniez

(2001) EB performed competitively, but it was totally ineffective on the two

hardest instances.

8. Conclusion

Boolean variables are merely a special case of non-Boolean variables, and,

intuitively, the difference between the non-Boolean and Boolean variables grows

as the domain size of the nb-variable increases. Consequently, one would expect

that in a comparison of encodings for non-Boolean problems that domain size

would be the most important parameter to consider and that one would find that

any difference in performance between the encodings would increase when

domain size is increased. Nonetheless, this issue has been overlooked. All problem

instances that Hoos considers have a domain size of 10. The planning instances

used by Ernst, Millstein and Weld are not identified and domain sizes are not

reported. The coloring instances used by Prestwich do vary considerably in

domain size, but his experiments are not designed to control this parameter. In

contrast to all other studies, ours considers the effect of varying domain size and

hence is able to confirm the expectation that domain size is generally a critical

parameter. Our study is also the first to explicitly consider the role of a

formulation’s polarity (being positive or negative). By considering polarity and

domain size we are able to make some observations not revealed by other studies.

Y Of all the methods considered here, NB scales best with increasing domain

size.
Y Many researchers have remarked that solving a problem by mapping it to

SAT (inevitably with the unary/unary encoding) and using an SLS SAT

solver can compete with using a custom-made SLS solver directly on the

problem. Though our results show the UU method to be quite robust, it can

run into difficulties with very large domain sizes. This is particularly true

for nonnegative formulations, since excessively many AMO clauses must

be included.

176 ALAN M. FRISCH ET AL.



Y The UB method is rarely effective, and it is never effective on problems

with moderate or large domain sizes.
Y On nonnegative formulations, the EB method is ineffective since the

encoding becomes prohibitively large with modest domain sizes.
Y On negative formulations the EB method is sometimes effective but often

ineffective. It always requires more flips than NB. It sometimes requires

somewhat fewer flips than UU (as shown in Prestwich’s results), but

sometimes requires vastly more. We know of no good explanation for this

puzzling pattern with respect to UU, but we can offer a conjecture. The EB

encoding generates a difficult search space for SLS (a point argued well by

Hoos), so a problem that is inherently difficult becomes practically

unsolvable by EB. On the other hand, the EB search space is much

smaller than than that of UU, especially with large domain sizes. We thus

hypothesize that EB will be more effective than UU on problem instances

that have very large domain sizes but are very easy. Note the we, and

almost everyone else, have focussed on hard problem instances, often

deliberately selecting ones at the phase transition. The one exception is the

set of coloring instances used by Prestwich, and he has observed the most

success with BB and EB.

Many questions remain to be addressed by future work. A wide range of

problems and encodings have yet to be explored. Stamm-Wilbrandt (1993) shows

how more than two dozen problems Y most of which are NP-complete Y can be

transformed to SAT. The present paper shows that there is great flexibility in

combining the different transforms. For example, it is possible to use a binary

AMO formula with a unary ALO formula, and it is possible to use different

transforms on each variable. From this we see that of all the possible ways of

encoding non-Boolean problems in Boolean formulas, very few have ever been

tried. Even within the small sphere of well-studied problems and well-studied

encodings, there are untried combinations.

The biggest challenge facing the study of problem encodings Y including all

encoding issues, not just the handling of non-Boolean variables Y is the quest for

generality. What can we say about about encoding issues that can guide us in

producing effective encodings of new problems? This challenge must be

decomposed if progress is to be made. This paper’s biggest contribution toward

this end is separating out the issue of non-Boolean variables and identifying

domain size and polarity as the critical parameters.

In addition to developing new problem encodings, we claim that the

applicability of SLS technology can also be extended by enriching the language

on which the SLS can operate. This claim is supported by recent results on pseudo-

Boolean constraints (Walser, 1997) and integer optimization (Walser, 1999),

nonclausal formulas (Sebastiani, 1994); and efficient handling of variable

dependencies (Kautz et al., 1997). Our success with NB-Walksat adds further

weight to the claim.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 177



Acknowledgements

We thank Henry Kautz and Bram Cohen for providing their Walksat code so that

we could develop NB-Walksat from it; Carla Gomes for allowing us to use their

quasigroup problem generator; Peter Stock for providing his NB-Satz program

and for using it to filter out the unsatisfiable instances from our suite of random

formulas; and Toby Walsh, Ian Gent, Steve Minton, Bart Selman and the

anonymous referees for useful suggestions.

References

Achlioptas, D., Gomes, C. P., Kautz, H. A. and Selman, B. (2000) Generating satisfiable problem

instances, in Proc. of the Seventeenth National Conf. on Artificial Intelligence, pp. 256Y261.

Béjar, R. (2000) Systematic and Regular Search Algorithms for Regular-SAT. Ph.D. thesis,

Universitat Autonòma de Barcelona.

Béjar, R. and Manyà, F. (1999a) A comparison of systematic and local search algorithms for

regular CNF formulas, in A. Hunter and S. Parsons (eds.), Proc. Fifth European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’99, London,
UK, Vol. 1638 of Lecture Notes in Artificial Intelligence, pp. 22Y31.

Béjar, R. and Manyà, F. (1999b) Solving combinatorial problems with regular local search

algorithm, in H. Ganzinger and D. McAllester (eds.), Proc. 6th Int. Conference on Logic for
Programming and Automated Reasoning, LPAR, Tbilisi, Georgia, Vol. 1705 of Lecture Notes
in Artificial Intelligence, pp. 33Y43.

Béjar, R. and Manyà, F. (2000) Solving the round robin problem using propositional logic, in Proc.
of the Seventeenth National Conf. on Artificial Intelligence, pp. 261Y266.

Béjar, R., Cabicol, A., Fernàndez, C., Manyá, F. and Gomes, C. P. (2001) Capturing structure with

satisfiability, in T. Walsh (ed.), Principles and Practice of Constraint Programming Y CP 2001,
pp. 135Y149.

Brafman, R. I. and Hoos, H. H. (1999) To encode or not to encode Y I: linear planning, in Proc. of
the Sixteenth Int. Joint Conf. on Artificial Intelligence, pp. 988Y993.

Colbourn, C. J. (1983) Embedding partial steiner triple systems is NP-complete, J. Comb. Theory
35.

Davis, M., Logemann, G. and Loveland, D. (1962) A machine program for theorem proving,

Commun. ACM 5(7).

Ernst, M. D., Millstein, T. D. and Weld, D. S. (1997) Automatic SAT-compilation of planning

problems, in Proc. of the Fifteenth Int. Joint Conf. on Artificial Intelligence, pp. 1169Y1176.

Frisch, A. M. and Peugniez, T. J. (1998) Solving non-Boolean satisfiability problems with local

search, in Fifth Workshop on Automated Reasoning: Bridging the Gap between Theory and
Practice, St. Andrews, Scotland.

Frisch, A. M. and Peugniez, T. J. (2001) Solving non-Boolean satisfiability problems with

stochastic local search, in Proc. of the Seventeenth Int. Joint Conf. on Artificial Intelligence,
Seattle, Washington, pp. 282Y288.

Gent, I. P. (2002) Arc consistency in SAT, in Proc. of the Fifteenth European Conf. on Artificial
Intelligence, pp. 121Y125.

Gent, I. P. and Walsh, T. (eds.), CSPLib: A Problem Library for Constraints. http://

www.csplib.org.

Gomes, C. P. and Selman, B. (1997) Problem structure in the presence of perturbations, in Proc. of
the Fourteenth National Conf. on Artificial Intelligence, pp. 221Y226.

178 ALAN M. FRISCH ET AL.



Gomes, C. P., Kautz, H. A. and Ruan, Y. (2001) lsencode: A Generator of Quasigroup with Holes

and Quasigroup Completion Problems.

Hoos, H. H. (1998) Stochastic Local SearchYMethods, Models, Applications. Ph.D. thesis,

Technical University of Darmstadt.

Hoos, H. H. (1999) SAT-encodings, search space structure, and local search performance, in Proc.
of the Sixteenth Int. Joint Conf. on Artificial Intelligence, pp. 296Y302.

Jonsson, A. K. and Ginsberg, M. L. (1993) Experimenting with new systematic and nonsystematic

search techniques, in Working Notes of the 1993 AAAI Spring Symposium on AI and NP-Hard
Problems, Stanford University in Palo Alto, California.

Kautz, H. A. and Selman, B. (1992) Planning as satisfiability, in B. Neumann (ed.), Proc. of the
Tenth European Conf. on Artificial Intelligence, Vienna, Austria, pp. 359Y363.

Kautz, H. A. and Selman, B. (1996) Pushing the envelope: planning, propositional logic, and

stochastic search, in Proc. of the Thirteenth National Conf. on Artificial Intelligence, Portland,
Oregon, USA, pp. 1202Y1207.

Kautz, H. A., McAllester, D. and Selman, B. (1996) Encoding plans in propositional logic, in L. C.

Aiello, J. Doyle, and S. Shapiro (eds.), Principles of Knowledge Representation and Reasoning:
Proc. of the Fifth Int. Conf. San Francisco, pp. 374Y385.

Kautz, H. A., McAllester, D. and Selman, B. (1997) Exploiting variable dependency in local search

(Abstract), in Poster Session Abstracts of IJCAI-97, p. 57.

Kautz, H. A., Ruan, Y., Achiloptas, D., Gomes, C., Selman, B. and Stickel, M. (2001) Balance and

filtering in structured satisfiable problems, in Proc. of the Seventeenth Int. Joint Conf. on
Artificial Intelligence, Seattle, Washington, pp. 351Y358.

Li, C. M. and Anbulagan (1997) Heuristics based on unit propagation for satisfiability problems, in

Proc. of the Fifteenth Int. Joint Conf. on Artificial Intelligence, pp. 366Y371.

Mitchell, D., Selman, B. and Levesque, H. J. (1992) Hard and easy distributions of SAT problems,

in Proc. of the Tenth National Conf. on Artificial Intelligence, San Jose, CA, pp. 459Y465.

Peugniez, T. J. (1998) Solving Non-Boolean Satisfiability Problems with Local Search. BSc

dissertation, Department of Computer Science, University of York.

Prestwich, S. (2004) Local search on SAT-encoded colouring problems, in Theory and
Applications of Satisfiability Testing: 6th Int. Conf., pp. 105Y119.

Sebastiani, R. (1994) Applying GSAT to non-clausal formulas, J. Artif. Intell. Res. 1, 309Y314.

Selman, B., Levesque, H. J. and Mitchell, D. (1992) A new method for solving hard satisfiability

problems in Proc. of the Tenth National Conf. on Artificial Intelligence, pp. 440Y446.

Selman, B., Kautz, H. A. and Cohen, B. (1994) Noise strategies for improving local search, in Proc.
of the Twelfth National Conf. on Artificial Intelligence, Menlo Park, CA, USA, pp. 337Y343.

Shaw, P. (1998) Using constraint programming and local search methods to solve vehicle routing

problems, in Principles and Practice of Constraint Programming Y CP 1998, pp. 417Y431.

Shaw, P., Stergiou, K. and Walsh, T. (1998) Arc consistency and quasigroup completion, in

Proceedings of ECAI98 Workshop on Non-binary Constraints.

Stamm-Wilbrandt, H. (1993) Programming in Propositional Logic, or Reductions: Back to the

Roots (Satisfiability), Technical report, Institut für Informatik III, Universität Bonn.

Stock, P. G. (2000) Solving Non-Boolean Satisfiability with the Davis-Putnam Method, BSc

dissertation, Dept. of Computer Science, Univ. of York.

Van Hentenryck, P. and Michel, L. (2003) Control abstractions for local search, in Principles and
Practice of Constraint Programming Y CP 2003, pp. 65Y80.

Walser, J. P. (1997) Solving linear pseudo-boolean constraint problems with local search, in Proc.
of the Fourteenth National Conf. on Artificial Intelligence, pp. 269Y274.

Walser, J. P. (1999) Integer Optimization by Local Search: A Domain-Independent Approach,
Springer, Berlin Heidelberg New York.

SOLVING NON-BOOLEAN SATISFIABILITY PROBLEMS 179



Regular Random k-SAT: Properties

of Balanced Formulas

YACINE BOUFKHAD1, OLIVIER DUBOIS2, YANNET INTERIAN3

and BART SELMAN4

1LIAFA, CNRS-Université Denis Diderot- Case 7014, 2, place Jussieu, 75251 Paris Cedex 05,
France. e-mail: boufkhad@liafa.jussieu.fr
2LIP6, Box 169, CNRS-Université Paris 6, 4 place Jussieu, 75252, Paris Cedex 05, France.
e-mail: Olivier.Dubois@lip6.fr
3Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA.
e-mail: interian@cam.cornell.edu
4Depatiment of Computer Science, Cornell University, Ithaca, NY 14853, USA.
e-mail: selman@cs.cornell.edu

Abstract. We consider a model for generating random k-SAT formulas, in which each literal

occurs approximately the same number of times in the formula clauses (regular random and k-
SAT). Our experimental results show that such regular random k-SAT instances are much harder

than the usual uniform random k-SAT problems. This is in agreement with other results that show

that more balanced instances of random combinatorial problems are often much more difficult to

solve than uniformly random instances, even at phase transition boundaries. There are almost no

formal results known for such problem distributions. The balancing constraints add a dependency

between variables that complicates a standard analysis. Regular random 3-SAT exhibits a phase

transition as a function of the ratio � of clauses to variables. The transition takes place at

approximately � ¼ 3.5. We show that for � > 3.78 with high probability (w.h.p.) random regular

3-SAT formulas are unsatisfiable. Specifically, the events En hold with high probability if

Pr Enð Þ ! 1 when n Y V. We also show that the analysis of a greedy algorithm proposed by

Kaporis et al. for the uniform 3-SAT model can be adapted for regular random 3-SAT. In

particular, we show that for formulas with ratio � < 2.46, a greedy algorithm finds a satisfying

assignment with positive probability.

Key words: satisfiability, phase transition, k-SAT, regular, Boolean formulae.

1. Introduction

The introduction of new methods for generating random hard instances is an

important factor in the development of new search algorithms for satisfiability

testing (SAT) (Le Berre and Simon, 2004). In addition, randomly generated SAT

problems provide important insights into typical case complexity.

The most popular model for generating random SAT problems is the uniform

k-SAT model, formed by selecting uniformly and independently m clauses from

the set of al1 2kð nk Þ k-clauses on a given set of n variables. Such randomly

Journal of Automated Reasoning (2005) 35: 181Y200
DOI: 10.1007/s10817-005-9012-z

# Springer 2006



generated instances exhibit a Bphase transition^ as a function of the ratio � of

clauses to variables (Mitchell et al., 1992). Uniform k-SAT problems with a

small � value typically have one or more satisfying assignments, whereas prob-

lems with a large � value have too many constraints and become unsatisfiable.

Experimental results showing the phase transition phenomenon motivated

theoretical interest in understanding uniform k-SAT. The main open question for

uniform k-SAT concerns the existence of a sharp threshold as the ratio of clauses

to variables increases. More precisely, the question is whether there exist

constants �k such that a random formula with � < �k is satisfiable w.h.p.,

whereas a random formula with � > �k is unsatisfiable w.h.p. For k ¼ 2, Chvatal

and Reed (1992), Goerdt (1996), and Fernandez de la Vega (1992) independently

proved the existence of the sharp threshold at �2 ¼ 1. For k Q 3, much less is

known. Friedgut (1999) proved the existence of a sharp threshold around a

critical sequence of values. In particular, he showed that there exists a function

�k(n) such that when the number of clauses is around �k(n)n the satisfiability of

the formula drops abruptly from near 1 to near 0. However, these results do not

provide information about the value of �k(n) and its dependence on n.
For uniform 3-SAT there has been a number of results on bounds for the

threshold �3 (see (Achlioptas, 2001) for a survey); the best known result for the

lower bound proves that a random uniform instance for 3-SAT is satisfiable

w.h.p. if � < 3.52 (Kaporis et al., 2003; Hajiaghayi and Sorkin, 2004). The best

known result for upper bounds states that for � > 4.506, random uniform 3-SAT

formulas are unsatisfiable w.h.p. (Dubois et al., 2000) (for a survey of upper

bounds see (Dubois, 200l)). For general k-SAT, the best known bounds are in

(Achlioptas and Peres, 2004; Achlioptas and Moore, 2002) for lower bounds and

in (Dubios and Boufkhad, 1997) and with a slightly less precise method in

(Kirousis et al., 1998) for upper bounds.

In this paper we give experimental and theoretical results for a different

model for random satisfiability, which we call regular k-SAT (Reg k-SAT). In
this model, each literal has nearly the same number of occurrences in the

formula. More specifically, given �, the expected ratio of clauses to variables,

and n, the number of variables, let r ¼ k�
2
be the expected number of occurrences

of each literal in the formula. We will generate instances such that each literal

appears )r2 or )r2 + 1 times in the formula.

In Figure 1(a), we first consider the computational properties of the Reg k-
SAT model. We plot the complexity of experimentally solving uniform 3-SAT

and Reg 3-SAT as a function of the ratio �, using the kcnfs solver (Dubois and
Dequen, 2001). The hardest problems with 300 variables for uniform 3-SAT

require less than 4000 branches (median cost) while for the same number of

variables Reg 3-SAT requires around 5e + 05 branches Y more than two orders of

magnitude difference. The same hardness is observed with another complete

SAT solver satz (Li, http://www.laria.u-picardie.fr/cli/EnglishPage.html) and

with incomplete solver WalkSAT. Bayardo and Schrag (1996) reported

182 YACINE BOUFKHAD ET AL.



comparable results on a model similar to the one we present here. (In the

Bayardo and Schrag (1996) model each literal has at least )r2 but in general

could have more than )r2 + 1 occurrences.) Reg 3-SAT also exhibits a phase

transition similar to that of uniform 3-SAT. However, the transition is at a quite

different ratio: around � ¼ 3.5, Reg 3-SAT instances change from satisfiable to

unsatisfiable (see Figure 1(b)). As one might expect, the figures show that the

complexity peak and the phase transition coincide.

Achlioptas et al. (2000) introduced a generator of satisfiability formulas based

on Latin squares that creates only satisfiable instances. More recently, that model

was modified to obtain a more Bbalanced^ version (Kautz et al., 2001), thereby

significantly increasing the difficulty of the instances. As in the comparison of

uniform 3-SAT versus Reg 3-SAT, in these generators the effect of balancing

dramatically increases the hardness of the problem. Another example of this

phenomenon appears in coloring random graphs. When considering the

Erdo}s� Rényi

0

model G n; p ¼ r
n

� �
versus the regular graphs G(n, r) with the

same average degree r, regular graphs are much harder to color than graphs in

G(n, p).
It is interesting to consider for a moment why solvers have so much more

trouble with regular or balanced problem instances. The key issue appears to be

that in the standard uniform random formula and graph models, solvers can

exploit variations between variable occurrences (or node degrees). In particular,

most solvers will first focus on variables that occur relatively frequently or nodes

with relatively high degree. In the uniform k-SAT model, literal occurrences

range from 0 to log(n), in n variable instances. This is a rather significant range,

and heuristics for variable selection exploit these differences quite successfully.

In the Reg k-SAT model, on the other hand, each literal occurs either r times or

r + 1 times for some small constant r (independent of n). So, one cannot exploit

Figure 1. (a) Median of the number of branches needed to solve Reg 3-SAT versus 3-SAT

as a function of the ratio �. We consider problems with 100, 200 and 300 variables for Reg

3-SAT and 300 variables for 3-SAT (triangle data points). The plot is in log scale. (b) Phase

transition in Reg 3-SAT. Probability that a Reg 3-Sat problem has at least one satisfying

assignment as a function of the ratio.

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 183



obvious differences in the frequency of literal occurrences. Setting variables and

simplifying the formula may disturb the precise balance of literal occurrences.

However, since the maximum literal occurrence is only r + 1, the formulas

remain nearly balanced with the maximum range of literal occurrences between 0

and r + 1. Because of the lack of variation between literal occurrences, these

balanced models require the development of solvers with new branching heu-

ristics to tackle them more effectively. We hope that our work will stimulate the

development of such new solvers.

Aside from the complexity differences, the fact that the thresholds for the

regular and the uniform k-SAT model occur at significantly different locations

also suggests that there are interesting differences between the two models. In

terms of the bounds on the threshold phenomena in the regular SAT model, we

will see how one can exploit the properties of the limited degree variation to

obtain bounds that are tighter than the bounds obtained for the uniform random

formula model. A deeper understanding as to why these bounds in the regular

SAT model are better may also lead us to new insights into the analysis of the

uniform SAT model.

An interesting direction for future research is to consider what happens when

one pushes the uniform random k-SAT model in the other direction: instead of

making them more balanced, make the literal occurrences even less balanced. In

particular, one could consider power-law distributions in terms of literal

occurrences. This would be analogous to the work on random graphs, where

one has found that power-law distributed node degrees are most prevalent in real-

world networks (e.g., the World Wide Web). Real-world SAT instances, such as

derived from bounded model-checking, also exhibit large variations in literal

occurrences. So, a random formula model with power-law literal occurrence

distribution would provide an interesting complement to our results for regular

SAT.

We begin the next section with a precise definition of our model. We use the

results of Cooper et al. (2002) to derive the sharp threshold for Reg 2-SAT. The

threshold for regular 2-SAT is at the same ratio of � ¼ 1 as for the uniform

random 2-SAT model. So, only for k > 2 do the properties of the models diverge

in an interesting way. In Section 3, we use the first moment method combined

with a subtle argument based on literal occurrences to prove that for � > 3.78 a

Reg 3-SAT formula is unsatisfiable w.h.p. In Section 4, we analyze a greedy

algorithm on Reg 3-SAT formulas to prove that for � < 2.46 the algorithm finds a

satisfying assignment with positive probability.

2. The Model

A k-SAT formula is a finite set of clauses, each clause being a disjunction of k
literals over the set of Boolean variables.

184 YACINE BOUFKHAD ET AL.



We are interested in generating random k-SAT formulas where each literal

appears in approximately the same number of clauses. For the case k ¼ 2, this

problem is very similar to the problem of generating a regular random graph. A

generalization of the usual procedure to generate random regular graphs is used

here to generate random regular k-SAT formulas. For simplicity, suppose we

want to generate a random 3-SAT formula in which each literal appears exactly

four times. We take a box in which we place four copies of each literal. If n is the

number of variables, we have 4 � 2n literals in the box. To form a clause, we

take 3 literals from the box without replacement. We continue until we have m ¼
8n /3 clauses. The problem with this procedure is that we may obtain Billegal^
clauses, that is, clauses in which a variable appears more than once. If that

happens, we start the process again. In practice, instead of restarting, we can also

just erase the illegal clauses.

With the algorithm described above one can obtain formulas in which all

literals appear exactly r times, for nonnegative integers r. Therefore, we get just

some values of the ratio � ¼ 2r /3. We generalize this procedure to obtain

formulas with average ratio � for every real �. In essence, to obtain a balanced

SAT formula with a ratio � that lies in between 2r/3 and 2(r + 1)/3, for some

value of r, we will create a random balanced formula where each literal has

either r occurrences or r + 1 occurrences. The ratio of the number of literals with

r occurrences to the number with r + 1 occurrences will be chosen carefully to

obtain the desired value of �. Our model is inspired by the way random graphs

with prescribed literal degrees have been defined.

We first introduce the notion of the literal degree sequence of a formula. Let n
be the number of variables, m ¼ )�n2, � > 0, the number of clauses in a k-CNF
formula F. We say that a literal x has degree l if x appears l times in the formula.

Let r ¼ k� /2 be the average literal degree. The degree sequence associated with

a formula F is the sequence {d1, dj1 . . . dn ,djn}, where dx is the number of

clauses in which the literal x occurs. So, the degree sequence simply tells us how

often each literal occurs in the formula.

The actual formula generation process consists of two steps. First, we ran-

domly generate a desired degree sequence for our formula. Then, to obtain our

balanced formula, we randomly generate a set of clauses that satisfies this degree

sequence.

Let {pl}lQ0 with
P

l�0 pl ¼ 1 be a sequence of nonnegative real numbers,

where pl is the probability of a literal having degree l. In our regular SAT model,

this sequence of probabilities is very simple: p)r2 ¼ p and p)r2+l ¼ 1 j p, where p
is defined so that the expected number of clauses is m ¼ �n, that is, p ¼ )r2 + 1 j
r, and all the other values for pl are zero. Given these probabilities for each

degree, we can generate a sequence of actual literals of degrees {d1, dj1 . . . dn,
djn} drawn independently from that distribution and conditioned on the event

that the sum of all degrees is a multiple of k. Note that in our regular SAT model,

each literal will have either degree )r2 or degree )r2 + 1 in this degree sequence.

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 185



After having obtained a literal degree sequence for our random formula, we

generate a random formula with this degree sequence. To do so, we generalize

the example discussed at the beginning of this section. Let Wd be the set of

literals associated with a degree sequence d where literal l appears dl times, i.e.,

D ¼ Wdj j ¼Pl dl. A configuration F is a partition of Wd into D=k groups of k
literals. For each configuration we obtain a formula with the desired degree

sequence by assigning literals in one group to literals in a clause. The problem

with that mapping is that some of these clauses may not be Blegal^. A legal

clause is one in which there are no repeated or complementary literals. Call a

configuration formula a formula that is not necessarily legal as opposed to a

simple formula, one with legal clauses. In the context of regular graphs, this

procedure is known as the configuration model (Janson et al., 2000).

For the analysis of Section 4, we need a slightly more general configuration

model. For simplicity consider the case in which we have a 3-SAT formula.

After we set some variables, and remove unit clauses by unit propagation, the

formula will consist of a mixture of 2- and 3-clauses and a certain degree

sequence. Let Wd be the set of literals associated with a degree sequence d. To
obtain a configuration formula with degree sequence d, C2 2-clauses, and C3 3-

clauses such that D ¼ Wdj j ¼Pl dl ¼ 2C2 þ 3C3, we partition Wd randomly in

C2 groups of two and C3 groups of three literals and associate each group with a

clause.

The next lemmas will help us to extend properties of the configuration

formulas to properties of simple formulas. Let Pr(SIMPLE) be the probability

that a configuration formula is simple.

LEMMA 1R Let m2 ¼ an, m3 ¼ bn, a Q 0, b Q 0, a + b > 0, and let d ¼ {d1, dj1

. . . dn, djn}, a bounded degree sequence di + dji < D, for some constant D. Let F
be a configuration formula with n variables, mi i-clauses i ¼ 1,2, and degree
sequence d (where

P
i di þ d�1 ¼ 2anþ 3bn). Then there exists a constant � > 0

such that

Pr F is SIMPLEð Þ ! � > 0 as n!1

Applying previous result for a ¼ 0 we get the following corollary.

COROLLARY 1. If F is a 3-Reg formula, there exist � > 0 such that

Pr F is SIMPLEð Þ ! � > 0 as n!1

LEMMA 2R Let F be as in the hypothesis of Lemma 1 and let y be a fixed
variable, the probability that we have a clause with 2 occurrences of the variable
y bounded by C/n.

186 YACINE BOUFKHAD ET AL.



The proofs of these lemmas are in the Appendix.

REG 2-SAT

Let d ¼ {d1, dj1 . . . dn, djn}, a degree sequence corresponding to a 2-SAT

formula. In the following theorem, we limit the maximum degree in the degree

sequence. To do so, we say that d is D-proper if di <D {1,j1,. . . , n, jn}, where
D is a constant depending on n.

The location of the threshold for the Reg 2-SAT model can be derived by

using the following theorem.

THEOREM 1 (Cooper et al., 2002)R Let 0 < � < 1 and n Y V. Let d be any D-
proper degree sequence over n variables, with D ¼ n1/11, and let F be a uniform
random simple formula with degree sequence d. Then

If D < 1� �ð Þm; then P F is satisfiableð Þ ! 1

If D > 1þ �ð Þm; then P F is satisfiableð Þ ! 0

where m is the number of clauses and D ¼Pn
i¼1 did�1.

COROLLARY 2R The Reg 2-SAT formulas have a threshold at � ¼ 1.

ProofR We prove that w.h.p. degree sequences generated with our Reg 2-SAT

model have the property that D
m! �. Using Theorem 1, we can conclude that

� ¼ 1 is the value of the threshold.

Let D ¼Pn
i¼1 did�i a random variable. Note that the expected value E(D) of

D is �2n and E(m) ¼ �n. Note that 2m ¼Pn
i¼1 di þ d�i; the variables di, i 2 {1,

j1, . . . , n, jn} are independent identically distributed random variables. The

variance of the variables D and m are easy to compute, and there exist constants

c, c0 such that Var(D) ¼ cn and Var(m) ¼ c0n.
Using Chebyshev’s inequality, we get that P D� �2n



 

 � n1=2þ�
� �! 0 as n

goes to infinity for any � > 0. A similar property follows for the variable m,
P m� �nj j � n1=2þ�
� �! 0 as n goes to infinity. Therefore the property follows

and then the claim. Ì

3. Upper Bound on the Threshold

In order to estimate the probability that a random formula is satisfiable, we bound

that probability by the expected number of solutions:

Pr F is satð Þ 	 E # solutions Fð Þ ¼ 2nPr x is a solutionð Þ ð1Þ

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 187



The last equality follows from the fact that the occurrences of each literal has

the same distribution. All assignments x 2 {0, l}n have the same probability of

being a solution. The use of the first inequality in (1) is known as the first

moment method.

For a clauses to variables ratio �, let q ¼ )3�n /22 j )3� /22n. In a

configuration formula, a subset of q among n variables chosen uniformly at

random will have )3� /22 + 1 positive copies and )3� /22 + 1 negative copies. The

remaining n j q variables will have )3� /22 copies for each sign. (If 3�n is odd,

then a literal chosen randomly will have a positive or negative copy more than

the copies of opposite sign but this has a negligible effect on the calculation of

the expectation). For the following we define, m ¼ q /n.
Thanks to Lemma 1, it is sufficient to compute a bound on configuration

formulas. Let Pr(SIMPLE) be the probability that a configuration formula is

simple.

Let Pr(SAT) be the probability that a configuration formula is satisfiable and

Pr0(SAT) the probability that a simple formula is satisfiable. We have

1� 1� Pr SATð Þ
Pr SIMPLEð Þ 	 Pr0 SATð Þ 	 Pr SATð Þ

Pr SIMPLEð Þ

Thanks to Lemma 1 and the preceding inequalities, the threshold for simple

formulas has the same location as the threshold for configuration formulas, if it

exists.

We consider a truth assignment T and compute the number of Reg-3-

SAT formulas satisfied by T. A clause is said to be of type i if it contains i true
literals with respect to T. Denote by �i the fraction of clauses of type i in a

formula.

In the uniform 3-SAT model, formulas are typically satisfied by some fixed

truth assignment in such a way that the proportion of each clause type

concentrates around its mean, namely, �1 ¼ 3/7, �2 ¼ 3/7, and �3 ¼ l /7.

This follows from the following observation. A random uniform 3-SAT formula

F is obtained by taking uniformly at random m ¼ �n clauses out of the 8ð n3 Þ
possible clauses. A formula that satisfied a certain assignment T is formed by

taking m = �n clauses from the 7ð n3 Þ possible clauses that satisfy T. From these

7ð n3 Þ clauses 3ð
n
3 Þ are of type l, 3ð n3 Þ are of type 2 and ð n3 Þ are of type 3.

Thus, the number of true literals is �1�n þ 2�2�nþ 3�3�n ¼ 12
7
�n; and the

number of false literals is 2�1�nþ �2�n ¼ 9
7
�n. So in the uniform model the

typical formulas are satisfied by truth assignments that skew true and false

literals in favor of true ones. Clearly, the random regular formulas are not among

these typical formulas because whatever truth assignment one considers, the

number of true and false literals is equal to 3�n/2 (simply because each variable

and its negation occur equally often in the formula). Thus, by restricting the �i to

188 YACINE BOUFKHAD ET AL.



take only values that satisfy the balance between signs, one can expect to get a

better bound than 5.19. Indeed, we establish the following:

THEOREM 2R Let ¼ 9�3 ffiffi5p
4

and �*¼ log 2ð Þ
3 log 2ð Þþ log 

3ð Þþ 3
2
�2ð Þ log 1

2
�2

3
ð Þþ �1

2ð Þ log �1
2ð Þ

’ 3:7822 If � > �* then w.h.p. every formula is unsatisfiable.
ProofR In the following, a configuration formula is viewed as 3�n ordered

cells such that cells numbered 1, 2, and 3 form the first clause, 4, 5 and 6 the

second clause and so on. A formula is then built by assigning a literal to each

cell. Then the total number of formulas is

n
�n

� �
3�nð Þ!

3�=2b c þ 1ð Þ!2�n 3�=2b c!2 1��ð Þn

Now, we count the number of Reg 3-SAT1 formulas satisfied by T. There are

�nð Þ!
�1�nð Þ! �2�nð Þ! �3�nð Þ! 3

�1�n3�2�n

ways to choose clauses of each type and to choose the cells for the i true liter and
in clauses of type i with the �i subject to the following constraints:

�1 þ �2 þ �3 ¼ 1 ð2Þ
and

�1 þ 2�2 þ 3�3 ¼ 3=2 ð3Þ
At this point, the cells that will be filled with true and false literals are fixed. It

remains to fill them with literals. There are

n
�n

� �
3�n=2b c!

3�=2b c þ 1ð Þ!�n 3�=2b c! 1��ð Þn

� �2

ways to fill correctly these cells with literals.

To sum up the probability that T satisfies a random Reg-3-SAT formula is

Pr T satisfies Fð Þ ¼ 3�n=2b c!
3�=2b c þ 1ð Þ!�n 3�=2b c! 1��ð Þn

� �2

3�=2b c þ 1ð Þ!2�n 3�=2b c!2 1��ð Þn

3�nð Þ!
X

�1;�2;�3ð Þ2A

3�1�n3�2�n �nð Þ!
�1�nð Þ! �2�nð Þ! �3�nð Þ!

where

A ¼
�
�1; �2; �3ð Þ= for some integers �1;�2;�3

�1 ¼ �1

n
; �2 ¼ �2

n
and �3 ¼ �3

n
subject to constraints 2ð Þ and 3ð Þ

�

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 189



After simplification:

Pr T satisfies Fð Þ ¼ 3�n=2b c!ð Þ2
3�nð Þ!

X
�1;�2;�3ð Þ2A

3�1�n3�2�n �nð Þ!
�1�nð Þ! �2�nð Þ! �3�nð Þ!

We use the fact that ªAª ¼ O(n3) (i.e., the number of terms of the sum is

bounded by a polynome) and the following inequality:

p

e

� �p ffiffiffiffiffiffiffiffi
2�p

p
	 p! 	 p

e

� �p ffiffiffiffiffiffiffiffi
2�p

p
1þ 1

12p� 1

� �
We get the exponential order of expectation of the number of solutions:

E # solutions of Fð Þ ¼ 2nPr T satisfies Fð Þ

� max �1;�2;�3ð Þ2A 2�3�2
3

�1

� ��1� 3

�2

� ��2� 1

�3

� ��3� !n

Let f� �1; �2; �3ð Þ ¼ 2�3�2 3
�1

� ��1�
3
�2

� ��2�
1
�3

� ��3�
: The problem amounts to max-

imize f� �1; �2; �3ð Þ subject to constraints
j (2) and (3). (The calculation for gen-

eral Reg k-SAT gives an analogous function f� �1; �2; . . . ; �kð Þ ¼ 2�k�2
Q

i¼1::k� k
i

� �
�1

��1�
; the maximization is subject to analogous constraints and can be solved

using standard Lagrange maximization method.)

From (2) and (3), we have �2 ¼ 3/2 j 2�i and �3 ¼ �1 j 1/2. f� can then be

expressed in terms of �1 alone. By applying log, we have to maximize the

following function of �1

g� �1ð Þ ¼ 1� 3�ð Þ log 2ð Þ þ � 3=2� �1ð Þ log 3ð Þ � ��1 log �1ð Þ
� � 3=2� 2�1ð Þ log 3=2� 2�1ð Þ � � �1 � 1=2ð Þ log �1 � 1=2ð Þ

which attains its maximum at �1* ¼ 9�3 ffiffi5p
4

.

The upper bound is obtained by solving w.r.t. � the equation g� �1*ð Þ ¼ 0:Ì

4. Lower Bound on the Threshold

In this section, we analyze a greedy algorithm and prove that it finds a satisfying

assignment with positive probability for formulas with � < 2.46. This result by

itself does not give a lower bound on the threshold. To prove a lower bound, we

j By ignoring the constraint of balancing between signs �1 + 2�2 + 3�3 = 3/2, the

maximum is at �1 = 3/7, �2 = 3/7, �3 = l/7 and the bound is 5.19 as for the uniform 3-SAT
model. Surprising, the fact that all variables have almost the same number of occurrences
disappears in the expectation. There remains only the constraint that each variable have the

same number of positive and negative occurrences.

190 YACINE BOUFKHAD ET AL.



need that property to hold w.h.p. In previous work on lower bounds for uniform

3-SAT, this problem was solved by using the result in (Friedgut, 1999) that

implies that if such property holds with positive probability it also holds w.h.p.

That result is not known for our model.

We first prove that configuration formulas with � < 2.46 are satisfiable with

positive probability. At the end of the section we discuss how to modify the proof

to get the same result for simple formulas.

To achieve our claim, it is enough to prove that with positive probability the

algorithm does not generate empty clauses. The algorithm we analyze makes n
iterations, setting one variable at each iteration. Keeping track of the number of

2-clauses at each iteration, of the algorithm and checking that for (� < 2.46 the

density of 2-clauses is bounded below 1 is sufficient to obtain the results.

The method of differential equations proposed in (Wormald, 1995) is used in

this analysis to keep track of the number of 2-clauses at each time. In particular,

our analysis follows closely the one done by Kaporis et al. (2002) for random

uniform S-SAT formulas. This is a well-known approach that has been used in

most of the lower bounds for the threshold of random uniform 3-SAT (e.g., see

(Achlioptas, 200l; Kaporis et al., 2002; Kaporis et al., 2003; Hajiaghayi and

Sorkin, 2004)).

For a fixed ratio a and the corresponding r ¼ 3�/2, let h be the smallest integer

greater than r. Let X j for j ¼ 0, . . . , h be the current collection of literals of degree

j. We consider an algorithm that at each time sets a literal with the higher

occurrence in the formula and sets unit clauses anytime they appear. Let’s call a

round the first while loop of the following algorithm. In a round we assign a

random literal and unit clauses that may appear.

Greedy algorithm

begin

let j ¼ h
while unset literals exists

while X j 6¼ ;
set an arbitrary literal from X j to TRUE

and its negation to FALSE and Del&Shrink

while unit clauses exits

set an arbitrary unit clause to True

its negation to FALSE and Del&Shrink

end

end

j ¼ j j 1

end

end

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 191



Note that in the process of choosing the literal to be assigned to true at the

beginning of each round, the greedy algorithm does not use any information

about the negation of that literal. Therefore the negated literal is random; in

particular its degree has the same distribution as any other literal in the formula.

As we already mentioned, the analysis of the algorithm relies on the method

of differential equations described in (Wormald, 1995). The idea is as follows:

suppose Yt = (Y1
t , . . . , Ys

t) are stochastic parameters related to a formula. In our

case, these parameters are the number of variables (literals), the number of 2-

clauses and S-clauses, and the number of liter and of degree i, 0 e i e h, in the

formula at time t. We want to estimate the trajectory of Yt through the duration of

our algorithm. In a restricted version, the theorem states that if

(a) Pr(ªYt+l j Ytª > n1/5) ¼ o(nj3)

(b) E(Yt+l j Yt ª Yt) ¼ f(t/n, Yt/n) + o(1)

(c) the function f is continuous and satisfies a Lipschitz condition on some set

D, then

Yt ¼ ny t=nð Þ þ o nð Þ ð4Þ
where y(x) is the solution of the system of differential equations

dy

dn
¼ f x; yð Þ y 0ð Þ ¼ Y0

n
ð5Þ

The precise statement of the theorem is given in the Appendix.

In order to make use of the previous theorem to analyze an algorithm one

needs to choose the algorithm, the set of parameters Yt, and the random model, to

satisfy the following property: after each round the resulting formula is random,

given the values of the parameters in Yt. Precisely, let Yt = (L(t), C3(t), C2(t),
X1(t), . . . ,Xh(t)), where L(t) is the number of unset literals and at time t, C3(t) and
C2(t) is respectively the number of 3-clauses and 2-clauses, and Xi is the number

of literals with degree i, 0 e i e h. That is, we need the following lemma.

LEMMA 3 (Kaporis et al., 2002)R During the evolution of the algorithm, the
formula remains random conditional on the current value of the parameters Yt.

Using Lemma 3, we are able to compute the expression in (b). In the

Appendix we give the expression for the function f in our case. Equation (4)

allows us to use the solution of the differential Equation (5) to trace our

parameter Yt. In particular we use the values of C2(t) to prove that with positive

probability the algorithm does not generate empty clauses.

If the density of 2-clauses 2C2 tð Þ
L tð Þ is bounded below 1, that property holds. A

proof for that result can be found in (Kaporis et al., 2002). The argument goes as

follows: The number of unit clauses generated in one of the while loops in the

algorithm can be approximated by a branching process. Suppose we start by

192 YACINE BOUFKHAD ET AL.



satisfying a unit clause. That assignment can produce some new unit clauses that

can be seen as the offspring of the first unit clause. The process continues until

all unit clauses are satisfied. The expected number of unit clauses produced by

one assignment has mean 2C2 tð Þ
L tð Þ . If � ¼ 2C2 tð Þ

L tð Þ for some constant r and for all t, the
process is subcritical, and its expected size is l/(1 j m). The probability of the

appearance of a literal b and its complement b in a single round can be proved to

be less than C /n for some constant C > 0 independent of t, and therefore the

probability of not having an empty clause is bounded by (1 j O(l / n))n, which is

greater than ejC0 for some constant C0.
Equation (4) holds for values of t such that the scaled number of literals l(t) ¼

L(t) / n > � for any fixed � > 0. Using the previous argument, we are able to prove

that for t < t* our main claim holds with positive probability. To finish the proof

we use Theorem 1 from Section 2 to prove that the remaining formula is

satisfiable w.h.p. We choose t* such that the degree sequence at time t* satisfies

the conditions of Theorem 1. Note that if we delete one literal from the every 3-

clause, we get a 2-SAT formula satisfiable w.h.p., and so the original formula is

also satisfiable.

We solve the differential equations (see Appendix B.l), associated with the

Equation (5), numerically using the ode45 function of matlab. The results are in

agreement with simulation of the algorithm on randomly generated formulas. We

find that for � ¼ 2.46,
2c2 xð Þ
l xð Þ is bounded below 1 for x < x*. We can conclude the

following result.

THEOREM 3R Let F be a configuration formula with ratio � < 2.46. The greedy
algorithm finds a satisfying assignment for F with positive probability.

To extend Theorem 3 for simple formulas, we just have to introduce some

minor changes in the proof. By exposing a variable x we mean disclosing the

information pertaining to this variable (e.g., the number of occurrences of x and x
in i-clauses). At each step we expose the variable we want to assign, some of the

information we expose is whether two literals from the same variable are in a

single clause. Let us call such event a bad event. Also the appearance of an

empty clause is considered a bad event. We are going to prove that the prob-

ability of a bad event in a round t is bounded by C/n for some constant C > 0

independent of t.
Claim: at any round the probability of having a bad event is less that C/n, for

some C > 0.

If T is the number of steps in a round, at that round we expose the information

about T variables. By Lemma 2, after exposing one variable the probability of

getting a cycle is bounded by C0/n, where C0 is independent of the round. The

probability that we get a cycle in the round conditioned on the number of steps in

a round being T, is bounded by TC/n. The unconditional probability is less than

E(T)C/n (E(T) can also be bounded independently of the round). These facts,

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 193



together with the fact that the probability of getting an empty clause is bounded

by C00/n independently of the round, complete the claim.

To finish we have to argue that the final subformula is simple and satisfiable

with positive probability. Prom our previous discussion we know it is satisfiable.

It is simple with positive probability by Lemma 1. We conclude the following

result.

THEOREM 4R Let F be a Reg 3-SAT formula with ratio � < 2.46. The greedy
algorithm finds a satisfying assignment for F with positive probability.

5. Conclusions

We proposed a new model for random k-SAT, in which every literal appears in

approximately the same number of clauses. Experimental results show that the

new model leads to formulas that are substantially more difficult to solve than the

well-known uniform k-SAT model. Experiments also show that the model

exhibits a phase transition as a function of �, the ratio of clauses to variables.

The hardest instances are concentrated around the value � ¼ 3.5, where the

probability that a formula is satisfiable falls from 1 to 0. We provide the first

rigorous bounds for this model. In particular, we obtain an upper bound of 3.78

for the location of the phase transition. This bound was obtained by exploiting

the special balanced nature of the formulas. Our analysis of a greedy algorithm

shows that we can find satisfying assignments for formulas with � < 2.46 with

positive probability.

The underlying theme of this research is to develop interesting alternatives to

the uniform random k-SAT model. In this paper, we have changed the almost

Poisson degree distribution of the uniform random and k-SAT to an almost

constant degree distribution of the regular random and k-SAT model. As we

discussed in the introduction, given the limited variance in degrees, solvers have

much more difficulty identifying good variables to branch on. It will require new

ideas for branching heuristics or different techniques altogether to make progress

on these formulas. (We did some preliminary experiments with WalkSAT and

survey propagation. Again, these formulas appear much harder than uniform

random k-SAT instances.) Eventually, we hope to develop other analyzable

models that that are closer to real-world instances. One interesting possibility in

this regard is to consider random formulas with power law distributed literal

degree distributions.

There are still other results to pursue for regular SAT. To get a proper lower

bound using our result for the greedy algorithm, one has to extend the proof of

Friedgut (1999) of the existence of a sharp threshold around some critical

sequence of values. Another interesting problem is to extend the results of

Chvatal and Szemeredi (1988). Chvatal and Szemeredi proved that for the

uniform and k-SAT model for k Q 3, unsatisfiable formulas need an exponential

194 YACINE BOUFKHAD ET AL.



refutation proof. Their proof extends to our model. But, more interesting, by

exploiting the additional balanced structure in our model as we did for the upper

bound result, we may be able to obtain sharper results.

Appendix

A. Proof of Lemmas 1 and 2

In this section we prove that the probability that a configuration formula F, with
parameter as in Lemma 1, is simple goes to a constant as the number of variables

goes to infinity.

Denote Di = di + dji, the number of occurrences of the variable i in the

formula F. Let � ¼Pn
i¼1 Di Di � 1ð Þ=n. Note that if xl is the fraction of variables

with degree (number of occurrences) l, then � ¼P�
l¼2 l l� 1ð Þxl. To be able to

take the limit, we are assuming that when n goes to infinity, the densities xl 0 e 1
e D are fixed. We prove the following result:

Pr F is SIMPLEð Þ ! e�� > 0 as n!1 ð6Þ
where � ¼ 2� aþb

2aþ3bð Þ2 1þ 3
2aþ3b

� �
:

Let us call a cycle a nonlegal clause in F. Let Z be the number cycles in F. A
configuration formula F is simple if and only if Z = 0.

Our proof follows a standard procedure (see (Janson et al., 2000) chapter 9,

(Bollobas, 200l) chapter 2). We are going to prove that the distribution of 2

converges to a Poisson distribution with mean L. Then Equation (6) follows,

because the right-hand side is just the probability of the event Z ¼ 0.

To prove that Z converges in distribution to a Poisson, we use the method of

moments (see Theorem 6.10 in (Janson et al., 2000)). Let (Z)k be the number of

ordered k disjoint cycles in F. We are going to prove that for every k Q 1

E Zð Þk ! �k as n!1
to conclude that the distribution of Z approaches the distribution of a Poisson

random variable with mean L.
Let (m2, m3) be the number of configurations with m2 2-clauses and m3 3-

clauses. Note that  m2;m3ð Þ ¼ 2m2þ3m3ð Þ!
2m26m3 m2þm3ð Þ!. The probability q1,0 that a particular

2-clause is present in a configuration is q1;0 ¼  m2�1;m3ð Þ
 m2;m3ð Þ . Moreover, the

probability qk, j that any disjoint k 2-clause and j 3-clauses are present in a

configuration is qk; j ¼  m2�k;m3�jð Þ
 m2;m3ð Þ . For fixed, k and j one can check thatj

qk;j � 2k6j

nkþ2j 2aþ 3bð Þ2kþ3j aþ bð Þkþj

j We say that a(n) õ b(n) when n Y V if limn!V
a nð Þ
b nð Þ ¼ 1.

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 195



To compute E(Z), note that we can divide cycles into two groups: the ones

coming from clauses with two different variables (for example x _ x _ y; x _ x _
y; x _ x), or the ones involving one variable x _ x _ xð Þ. We prove that the last

ones have a very small probability and they do not contribute to our calculation.

Let Z = Y0 + Y00, where Y0 are the number of cycles in the first group and Y00 the
ones in the second.

Now we have to count how many clauses form cycles. Consider the first case.

Here we have the 2-clause cycles and 3-clause cycles. The number of cycles

coming from 2-clauses is

a1;0 ¼
Xn
i¼1

Di Di � 1ð Þ ¼ �n

The one coming from 3-clauses is

a1;0 ¼
Xn
i¼1

Di Di � 1ð Þ n� Dið Þ � �n2

Therefore E(Y0) = a1,0q1,2 + a0,lq0,l õ L. Note now that if we count how many

edges give us cycles of the second type, there are just
Pn

i¼1Di Di � 1ð Þ Di � 2ð Þ
< �3n, as q0,ln goes to 0 then E(Y00) Y 0 as n Y V.

Next, we compute E((Z)s). Recall the (Z)s is the number of ordered s disjoint

cycles. This time divide (Z)s into two sets: cycles in Y0 not only are cycles on the

first kind described before but also each cycle corresponds to different variable,

cycles in Y00 have either a cycle of the second type or two or more cycles

correspond to the same variable. Similar to what we have done before, one can

prove that E(Y00) Y 0 as n Y V.
We can write

E Y0ð Þ ¼
X
kþj¼s

qk; jak; j

where ak,j is the number of s disjoint cycles with k 2-clause cycles and j 3-clause
cycles.

Note that ak,j has the following expression (if we approximate as before n j
Di by n)

ak; j ¼ k þ j
j

� �
nj

X
i1;i2;...;ikþj

Di1 Di1 � 1ð Þ 
 
 
Dikþj Dikþj � 1
� � ð7Þ

where the sum over {i1, i2, . . . , ik+j} is over the set of disjoint indexes.

Claim: ak;j ¼ k þ j
j

� �
n2jþk.

Note that the difference between the above expression and (7) are the terms in

which the same index is repeated but those terms are going to 0 when we divide

by nk+j.

196 YACINE BOUFKHAD ET AL.



Now note that

qk; jak; j � 2� aþ bð Þ
2aþ 3bð Þ2

 !kþj
3

2aþ 3b

� �j
k þ j
j

� �
So we get E(Y 0 ) õ Lk. This completes the proof.

Proof of Lemma 2.The proof uses some of the ideas explained before. Let D
be the number of occurrences of variable y in F and Z be the number of clauses

with two occurrences of the variable y. As is the previous proof,

E Zð Þ ¼ D D� 1ð Þq1;0 þ D D� 1ð Þ n� Dð Þq0;1

	 D2

n

2 aþ bð Þ
2aþ 3bð Þ2 1þ 3

2aþ 3b

� 	
:

P(Z > 1) e E(Z) e C/n, and the lemma follows, where C is given in the

expression above.

REMARK. The constant C can be bound uniformly for all the configuration

formulas consider though the analysis. Note that we set variables until time t* as

explained in the prove of the Section 4, the remaining clauses at that time is of

order order n so 2a + 3b ¼ c > 0 for some constant c. Therefore we have that at

any state of the algorithm D2 2 aþbð Þ
2aþ3bð Þ2 1þ 3

2aþ3b
h i

< �2 �
c2 1þ 3=cð Þ:

B. Differential Equations

In this section we discuss the main theorem used in Section 4 to analyze the

random process.

We consider here a sequence of random process Yt ¼ Yt(n), n ¼ 1,2, . . . , For
simplicity the dependence on n is dropped from the notation. Let F t be the

s-field generated by the process up to time t, i.e., F t ¼ � Y0;Y1; . . . ; Ytð Þ. Our
process Yt ¼ (Yt

(1), . . . ,Yt
( j)) is a vector of dimension j. Let Yk k ¼ max Y 1ð Þ

 

;�

. . . ; Y jð Þ

 

Þ. Suppose that Y0 ¼ z0n the value of the process at time 0.

We say that X ¼ o( f(n)) always if max{x: Pr(X = x) m 0} ¼ o(f(n)). The term
uniformly means that the convergence implicit in the o( ) is uniform on t.

THEOREM 5 (Wormald, 1995)R Let f : <jþ1 ! <j. Suppose there exists a
constant C such that the process Yt is bounded by Cn, i.e., jjYtjj< Cn. Suppose
also that for some function m ¼ m(n):

(i) for all t < m and all l

Pr Ytþ1 � Ytk k > n1=5jF t

� �
¼ o n�3
� �

always;

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 197



(ii) for all l and uniformly over all t < m,

E Ytþ1 � YtjF tð Þ ¼ f t=n;Yt=nð Þ þ o 1ð Þ
always;

(iii) The function f is continuous and satisfies a Lipschitz condition on D, where
D is some bounded open set containing (0, z0

(1), . . . , z0
(j)).

Then:

(a) The system of differential equations

dz

ds
¼ f s; zð Þ

has a unique solution in D for z : < ! <j with initial conditions z(0) = z0
and which extends to points arbitrarily closed to the boundary of D.

(b)

Yt ¼ nz t=nð Þ þ o nð Þ w:h:p:
uniformly for 0 e t e min{sn, m}, where s is the supremum of those s to
which the solution can be extended.

B.1. DIFFERENTIAL EQUATIONS FOR THE LOWER BOUND

Let 1 be the scaled number of current unset literals, c3, c2 the scaled number of 3-

clauses and 2-clauses, respectively, and xs the scaled number of literals of degree

s, s = 1, . . . , 4. The equations for round j are

dl

dt
¼ �2� 4

c2
l� 2c2

dc3
dt
¼ � 3jc3

p
� 3c3

l
þ � 3jc3

p
� 3c3

l

� �
2c2

l� 2c2

dc2
dt
¼ 3c3 � 2c2

l
� 2jc2

p
þ 3c3 � 2c2

l
� 2jc2

p

� �
2c2

l� 2c2

dx4
dt
¼ � 6c3 þ 2c2ð Þ 4x4

p2
j� x4

l
� �4;j

� 6c3 þ 2c2ð Þ 4x4p2 jþ x4
l þ 4x4

p

� �
2c2

l�2c2

dxs
dt
¼ 6c3 þ 2c2ð Þ sþ 1ð Þxsþ1 � sð Þxs

p2
dj � xs

l
� �s;j

6c3 þ 2c2ð Þ sþ 1ð Þxsþ1 � sð Þxs
p2

dj � xs
l
� sxs

p

� �
2c2

l� 2c2
for s ¼ 1; 2; 3

with initial conditions l¼ 2, c3¼ c, c2¼ 0, x4¼ 2p, x3 ¼ 2(1 j p), x2 ¼ 0, x1 ¼ 0.

198 YACINE BOUFKHAD ET AL.



References

Achlioptas, D. (2001) Lower bounds for random 3-SAT via differential equations, Theor. Comp.
Sci. 265, pp. 159Y185.

Achlioptas, D. and Moore, C. (2002) The asymptotic order of the random k-SAT threshold, in 43th
Annual Symposium on Foundations of Computer Science, Vancouver, pp. 779Y788.

Achlioptas, D. and Peres, Y. (2004) The threshold for random k-SAT is 2kln2 Y O(k), J. Amer.
Math. Soc. 17, 947Y973.

Achlioptas, D., Gomes, C. P., Kautz, H. A., and Selman, B. (2000) Generating satisfiable problems

instances, in Proceedings of 17th National Conference on Artificial Intelligence, pp. 256Y261.

Bayardo, R. J. and Schrag, R. (1996) Using CSP look-back techniques to solve exceptionally hard

SAT instances, in Proceedings of the Second Int. Conf. on Principles and Practice of Constraint
Programming, pp. 46Y60.

Bollobas, B. (2001) Random Graphs Second Edition, Cambridge University Press, United

Kingdom.

Chvatal, V. and Reed, B. (1992) Mick gets some (the odds are on his side). Proceedings of 33rd
FOCS, pp. 620Y627.

Chvatal, V. and Szemeredi, E. (1988) Many hard examples for resolution, J. Assoc. Comput. Mach.
35 759Y768.

Cooper, C., Frieze, A. and Sorkin, G. B. (2002) A note on random 2-SAT with prescribed literal

degrees. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms.

Dubois, O. (2001) Upper bounds on the satisfiability threshold, Theor. Comput. Sci. Vol. 265,
187Y197.

Dubois, O. and Boufkhad, Y. (1997) A general upper bound for the satisfiability threshold of

random r-SAT formulae, J. Algorithms 24(2), 395Y420.

Dubois, O. and Dequen, G. (2001) A backbone search heuristic for efficient solving of hard 3-SAT

formulae, in Proceedings of 17th International Joint Conference on Artificial Intelligence,
Seattle, pp. 248Y253.

Dubois, O., Boufkhad, Y. and Mandler, J. (2000) Typical random 3-SAT formulae and the

satisfiability threshold, in SODA, pp. 126Y127. Full version in Electronic Colloquium on

Computational Complexity (ECCC 2003).

Fernandez de la Vega, W. (1992) On random 2-SAT. Manuscript.

Friedgut, E. (1999) Sharp thresholds for graph properties and the k-sat problem, J. Amer. Math. Soc.
12, 1017Y1054.

Goerdt, A. (1996) A threshold for unsatisfiability, J. Comput. Syst. Sci. 53(3), 469Y486.

Hajiaghayi, M. and Sorkin, G. (2004) The satisfiability threshold of random 3-SAT is at least 3.52.

www.math.mit.edu/hajiagha/3satRCl.ps.

Janson, S., Luczak, T. and Rucinski, A. (2002) Random Graphs, Wiley, New York.

Kaporis, A. C., Kirousis, L. M. and Lalas, E. G. (2002) The probabilistic analysis of a greedy

satisfiability algorithm, in 10th Annual European Symposium on Algorithms.

Kaporis, A. C., Kirousis, L. M. and Lalas, E. (2003) Selecting complementary pairs of literals.

Electron. Notes Discrete Mathem. 16.

Kautz, H., Ruan, Y., Achlioptas, D., Gomes, C. P., Selman, B. and Stickel, M. (2001) Balance and

filtering in structured satisfiable problems, in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence.

Kirousis, L. M., Kranakis, E., Krizanc, D. and Stamatiou, Y. C. (1998) Approximating the

unsatisfiability threshold of random formulas, Random Struct. Algorithms 12(3), 253Y269.

Le Berre, D. and Simon, L. (2004) 2004 SAT competitions. http://www.lri.fr/simon/contest/results/

Li, C.-M. SATZ. http://www.laria.u-picardie.fr/cli/EnglishPage.html.

REGULAR RANDOM k-SAT: PROPERTIES OF BALANCED FORMULAS 199



Mitchell, D., Selman, B. and Levesque, H. (1992) Hard and easy distributions of SAT problems, in

Proceedings of the 10th National Conf. on Artificial Intelligence, pp. 459Y465.

Wormald, N. C. (1995) Differential equations for random processes and random graphs, Ann. Appl.
Probab. 5(4), 1217Y1235.

200 YACINE BOUFKHAD ET AL.



Applying SAT Solving in Classification

of Finite Algebras

ANDREAS MEIER1 and VOLKER SORGE2

1DFKI GmbH, Saarbrucken, Germany. e-mail: ameier72@web.de
2School of Computer Science, University of Birmingham, Birmingham, UK.
e-mail: v.sorge@cs.bham.ac.uk

Abstract. The classification of mathematical structures plays an important role for research in pure

mathematics. It is, however, a meticulous task that can be aided by using automated techniques.

Many automated methods concentrate on the quantitative side of classification, like counting

isomorphism classes for certain structures with given cardinality. In contrast, we have devised a

bootstrapping algorithm that performs qualitative classification by producing classification theorems

that describe unique distinguishing properties for isomorphism classes. In order to fully verify the

classification it is essential to prove a range of problems, which can become quite challenging for

classical automated theorem provers even in the case of relatively small algebraic structures. But

since the problems are in a finite domain, employing Boolean satisfiability solving is possible. In this

paper we present the application of satisfiability solvers to generate fully verified classification

theorems in finite algebra. We explore diverse methods to efficiently encode the arising problems

both for Boolean SAT solvers as well as for solvers with built-in equational theory. We give

experimental evidence for their effectiveness, which leads to an improvement of the overall

bootstrapping algorithm.

Key words: application of SAT, finite algebra, mathematics.

1. Introduction

The classification of finite algebraic structures is an important task in research

in pure mathematics. Often, the first step toward full classification is to de-

termine how many structures exist up to isomorphism for each cardinality. In

particular, in domains where many structures have to be considered, this is an

laborious task, which can be supported by automated techniques. For instance,

isomorphism-free enumeration techniques can be applied to count isomorphism

classes for quasigroups and loops up to order 11 [14, 15]. While quantitative

results of this type already give some insight into the size and complexity of an

algebraic domains, classification theorems of a more qualitative nature are often

more interesting. Their information can sometimes allow one to use properties of

relatively small structures to help classify larger structures.

Automated techniques such as constraint solving and the Davis-Putnam

method have been used extensively to determine the number of algebras of a given

Journal of Automated Reasoning (2005) 35: 201Y235
DOI: 10.1007/s10817-005-9003-0

# Springer 2006



type and size, and this has answered many open questions. For instance, [6, 12, 20,

27] report on the use of model generation techniques and satisfiability (SAT)

solvers to tackle quasigroup existence problems. J. Zhang was the first to use a

general reasoning program to solve an open quasigroup existence problems.

Later, Fujita, Slaney, Stickel, McCune, and H. Zhang used their systems to solve

several open cases and reported very competitive results. More recently,

completing partial quasigroups has been proposed as a structured benchmark

domain for the study of constraint satisfaction methods [9]. In addition to

classifying structures within an algebraic axiomatization, automated theorem

proving has been used to find new axiomatizations for algebras, thus enabling

better intraclassification of algebras. In particular, new representations of groups

have been found [10, 11].

In [5], we have presented a bootstrapping algorithm that enables the fully

verified qualitative classification of algebras up to isomorphism. The algorithm

starts with only the basic axioms of a particular algebraic structure, successively

computes properties to separate nonisomorphic structures, and returns a set of

unique distinguishing properties for all isomorphism classes. As a simple

example, given the axioms of group theory and the cardinality 6, our algorithm

returns the following (paraphrased) result: BAll groups of size 6 belong to either

of two isomorphism classes where one contains all Abelian and the other all

non-Abelian groups.^ The algorithm itself incorporates diverse reasoning

techniques by employing state of the art systems; in particular it uses model

generation, machine learning, computer algebra, and automated theorem

proving to obtain its results. For instance, it incorporates the first-order prover

Spass [24] to verify the results of the classification. One of the problems that

needs to be proved is to show that a particular set of properties uniquely defines

an isomorphism class for particular algebraic structures of a given cardinality.

When conducting experiments with the algorithm, the theorem-proving part

turned out to be the main bottleneck. Although Spass was the only first-order

prover that solved a significant number of problems for our domain, its ap-

plication is still very limited. For instance, Spass failed to solve all necessary

problems for the verification of the classification of relatively small structures

such as quasigroups of cardinality 5. Since our classification is concerned with

finite algebras, we considered SAT solvers as substitute proof engines. In this

article we present a variety of approaches to an efficient encoding of quasigroup

classification problems for several types of SAT solvers and their experimental

comparison. The main contribution of our work is an extension of work pre-

sented in [26] on the encoding of quasigroup problems in propositional logic and

the development of three alternative approaches to encode isomorphisms be-

tween quasigroups.

In detail, Section 2 presents an overview of our bootstrapping algorithm,

which has already been described in [5], concentrating mainly on the aspects that

are important for this article.

202 ANDREAS MEIER AND VOLKER SORGE



In Section 3 we present a formalization of our problems in propositional logic

that builds on aspects of the work done by Zhang in [26]. In particular, we use

Zhang’s techniques for eliminating universal quantifications over finite domains

and for encoding simple equations and inequations as propositional variables.

We extend his work by two approaches to deal with existential quantifications as

well as by equations that contain nested operator applications. We furthermore

adapt the clause normalization procedure of Nonnengart and Weidenbach [17] to

produce small clausal normal forms that are suitable both for pure SAT and for

solvers with built-in equational theories.

When constructing classification theorems for quasiqroups the most challeng-

ing problems are concerned with showing that all structures with certain

properties are isomorphic. In Section 4 we present three encodings for

isomorphisms inside satisfiability problems we have developed: a naı̈ve way of

enumerating all isomorphisms, and two more refined approaches that take

advantage of computer algebra computations to reduce the number of iso-

morphisms by considering generating systems for the structures involved. These

two approaches are particularly well suited for the domain of quasigroups.

We have tested our approaches by experimenting with three different SAT

solvers: (1) zChaff [16], a Boolean SAT solver combining the Davis-Putnam

procedure with Boolean constraint propagation; (2) CVClite [3], a validity

checker that accepts full first-order formulas with equality as input but that

reasons on propositional problems with an efficient internal SAT solver; (3)

DPLLT [7], a satisfiability solver with built-in procedures and equational theory

that accepts ground clauses with equations.j The results of these experiments Y
given in detail in Section 5 Y show not only that employing satisfiability

checking instead of theorem proving can greatly improve the power of our

classification algorithm but also that the more elaborate isomorphism encodings

significantly increase the solvability horizon of the single solvers.

2. Problem Domain

The problem domain for classification in finite algebra has been introduced in

detail in [5]. Here we only briefly present the problem of generating classification

theorems in finite algebra and illustrate it with a concrete example, to which we

shall refer throughout this article. We then sketch the bootstrapping algorithm

that we have designed to solve the problem and focus, in particular, on the proof

problems that occur during the bootstrapping procedure.

j Note that the DPLLT system we use in our experiments is just one instance of the
general DPLLT engine based on the very first implementation of this principle.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 203



2.1. CLASSIFICATION PROBLEMS IN FINITE ALGEBRA

General classification problems in algebra can be defined with respect to any

equivalence relation given on a class of algebras. In this article we restrict

ourselves to the isomorphism relation on algebras. We define the classification

problem as follows. Let A be a finite collection of algebraic structures, and let ffi
be the isomorphic equivalence relation on A. Then ffi induces a partition into

equivalence classes [A1]ffi, [A2]ffi, . . . , [An]ffi, where Ai 2 A for i = 1, . . . , n. We

call the [Ai]ffi isomorphism classes and Ai a representant for the isomorphism

class [Ai]ffi. Thus an isomorphism class is a collection of algebras that are all

isomorphic to each other.

Let P be a property that is invariant under isomorphism. Then P acts as a

discriminant for any two structures A and B in A, in the sense that if P(A) and
KP(B), then A . B. If, in addition, P holds for every element of an isomorphism

class [Ai]ffi, but does not hold for any element in An Ai½ �ffi, then we call P a

classifying property for [Ai]ffi. A full set of classifying properties Y with one

property for each isomorphism class Y comprises a classifying theorem stating

that each element of A exhibits exactly one of the classifying properties. The

classification problem is therefore to find a full set of classifying properties.

Although our approach to solve the classification problem is general, in this

article we restrict the class of algebras to quasigroups and loops. We call a non-

empty set Q together with a closed binary operation ) : Q � QY Q a quasigroup

if, for each (a, b) 2 Q � Q, there is a unique (x, y) 2 Q � Q, so that a ) x = y )
a = b. In other words, for each pair of elements in Q there exist uniquely

determined left and right divisors and therefore the property is sometimes also

called unique solvability [18]. Moreover, for finite structures, the property

guarantees that in the multiplication table of Q each element occurs exactly

once in each row and each column. This property is also known as the Latin
square property. We call a quasigroup L a loop if it contains a unit element, that

is, there exists a unit 2 L such that for each x 2 L we have x ) unit = unit ) x = x.
Note that in the general case neither quasigroups nor loops are associative. If

they are associative they are groups.

An example of quasigroups of order 3 is given in Figure 1 in terms of

multiplication tables for the respective operations ). In fact the five quasigroups

Q1 to Q5 are representants of the five isomorphism classes for quasigroups of

order 3. The classification problem is then to find five properties, one for each Q1

to Q5, that uniquely characterize each isomorphism class and moreover to show

that these five quasigroups indeed represent all possible isomorphism classes.

Figure 1. Isomorphism class representants of quasigroups of order 3.

204 ANDREAS MEIER AND VOLKER SORGE



2.2. BOOTSTRAPPING ALGORITHM

The bootstrapping algorithm to generate classification theorems takes a set of

properties P and a cardinality n as input. It returns a decision tree that contains

the classification theorem for the algebraic structures of order n that satisfy P, as
well as a set of representants for each isomorphism class.

The algorithm itself works as follows: Given a set of properties P and a

cardinality n it initializes a decision tree with the root node N labeled with the

properties P. We denote the properties a node is labeled with by PN . The
algorithm then constructs an example of an algebraic structure of order n sat-

isfying PN . If no example can be produced, the algorithm will show that indeed

no structure of size n with properties PN can exist. If an example exists, the

algorithm does either of the following two things: (1) It shows that the node

represents an isomorphism class; that is, it proves that all structures of order

n that satisfy the properties PN are isomorphic to each other, or, (2) it con-

structs another algebraic structure satisfying PN that is not isomorphic to the first

one.

In case (2) the algorithm computes discriminating properties for the two

structures. Either it computes one discriminating property P such that P holds for

one structure and KP holds for the other structure, or it computes two

discriminating properties P1 and P2, one for each structure. These properties

are then used to further expand the decision tree: For one property P two new

nodes N 0 and N 00 are added, with labels PN 0 ¼ PN [ Pf g and PN 00 ¼
PN [ :Pf g, respectively. For two properties, P1 and P2, four new nodes have

to be created: one for each of the possible combinations of discriminants,

namely, P1 $ P2, KP1 $ P2, P1 $ KP2, and KP1 $ KP2.
After new nodes have been created for each of these nodes, the above steps

are carried out again. The algorithm terminates once no more expansions can

be applied. The leaf nodes then either represent isomorphism classes or are

empty, that is, no structure exists with the properties given in the node. We

generally call the former isoclass nodes and the latter dead-end nodes, and we

refer to all nonleaf nodes as branching nodes. The final classification theorem

corresponds then to the disjunction of the properties given as labels of the

isoclass nodes.

An example of a fully constructed decision tree is given in Figure 2. The

three represents the classification theorem for quasigroups of order 3. The

leaves 2, 4, 6, 7, and 8 are isoclass nodes, whereas leaf 9 is a dead-end

node. The representants of the isoclass nodes correspond, from left to right,

to the quasigroups given in Figure 1 (i.e., Q1 is the representant of node 2,

and so on). To preserve space, the properties have been denoted at the

edges rather than at the vertices in the tree. Thus, the properties of a node

correspond to the conjunction of the properties given on a path from the

vertex to the root. In addition, the basic properties of quasigroups have been

omitted.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 205



The bootstrapping algorithm itself coordinates only the construction of the

decision tree, while the occurring challenging deductive problems are outsourced

to specialized systems:

Y model generators (Finder [19], Sem [29], and Mace [13]) to generate example

structures in each node,

Y the machine learning program HR [4] to find discriminants, and

Y automated theorem proving to solve the occurring proof problems.

2.3. PROOF PROBLEMS

The decision tree constructed by the bootstrapping algorithm represents a

classification theorem and is thus the mathematical result of the classification

process. For instance, the tree in Figure 2 represents the classification theorem

that there are five isomorphism classes of quasigroups of order 3, which can be

uniquely described by the properties associated with the isoclass nodes. The

proof of the overall classification theorem is done stepwise by showing the

correctness of the decision tree in each step of its construction. The proof

problems resulting from these correctness checks are therefore essentially

artefacts of our bootstrapping approach. In this article we concern ourselves

mainly with these proof problems and describe them in more detail in the

remainder of this section. The two subsequent sections discuss their encoding in

propositional logic.

The proof problems can be roughly divided into two categories:

1. Checking the correctness of computations in branching nodes.

2. Establishing properties of the final classification theorem.

Problems of type 1 are mainly concerned with verifying computations from

systems external to the bootstrapping algorithm, that is, model generation and

machine learning. They are not strictly necessary for the construction of the

Figure 2. Decision tree for the classification problem of order 3 quasigroups.

206 ANDREAS MEIER AND VOLKER SORGE



decision tree but are required if we want to generate a fully verified classification

theorem.

Let A, A1, A2 be algebraic structures, let P, P1, P2 be properties, and let P be

the algebraic properties given as input to the bootstrapping algorithm. Then we

can formulate the following theorems that need to be proved during the decision

tree construction:

1. Representant Theorem: A satisfies the properties P and P: we write for-

mally P Að Þ ^ P Að Þ.
2. Nonisomorphic Theorem: A1 and A2, both satisfying P and P, are not

isomorphic A1 . A2.

3. Discriminant Theorem: P is a discriminant, i.e., if P holds for one algebra

but does not hold for another algebra, then the two algebras are not

isomorphic: 8A1, A2 ÍP(A1) $ KP(A2) Y A1 . A2.

4. Isomorphism-Class Theorem: All algebras of cardinality n that satisfy P and

P are isomorphic: 8A1; A2 Í P A1ð Þ ^ P A2ð Þ ^ P A1ð Þ ^ P A2ð Þ½ � ! A1 ffi A2.

5. Dead-end Theorem: No algebra of cardinality n satisfies P and P:
:9AÍP Að Þ ^ P Að Þ.

Theorems 1Y3 belong to the first of the above categories, while Theorems 4

and 5 belong to the second. In detail, the representant and nonisomorphic

theorems verify the model generation: the former checks that a constructed

model has indeed the desired properties. The latter verifies that the two models

are indeed nonisomorphic and thus guarantees against the construction of too

many isomorphism classes. Theorem 3 verifies that the constructed property is

indeed a valid discriminant.

Finally, the Isomorphism-Class and the Dead-End Theorem are used to

establish that the algorithm has reached a leaf of the decision tree. The

Isomorphism-Class Theorem verifies that all algebras satisfying the property

given by the node’s label form an isomorphism class. The Dead-End Theorem, on

the other hand, establishes that a leaf node is indeed empty. Both theorems can

also be regarded as a verification of failed model generation attempts, either to

generate a nonisomorphic model or to construct a model at all.

As an example we examine the theorems proved in the first steps of the

construction of the decision tree for quasigroups of order 3 given in Figure 2.

In node 1 the only property to consider is the unique solvability property for

quasigroups. Q1 from Figure 1 is generated as representant that satisfies this

property. This leads to the Representant Theorem:

8a; b 2 Q1Í9 x; y 2 Q1Ía � x ¼ b ^ y � a ¼ b½ �: ð1Þ
Then Q2 is generated as a second model, not isomorphic to Q1, which is

shown with the Nonisomorphic Theorem

Q1.Q2: ð2Þ

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 207



Given Q1 and Q2 the algorithm constructs the discriminant P1, which is

verified with the Discriminant Theorem and leads to the construction to two child

nodes 2 and 3:

8A1;A2Í 9b 2 A1Í b � b ¼ b½ � ^ :9b 2 A2Íb � b ¼ b½ � ! A1.A2: ð3Þ

In node 2 no further nonisomorphic model can be constructed, but instead we

can show that all structures with the properties P and KP1 are isomorphic to each

other. Since with Q1 we already have a representant of the isomorphism class, for

which we have shown that the properties holds, it suffices to prove that all

structures satisfying these properties are isomorphic to Q1:

8AÍ 8a; b 2 AÍ 9x; y 2 AÍ a � x ¼ b ^ y � a ¼ b½ �½
^ :9b 2 AÍ b � b ¼ b½ �� ! Q1 ffi A: ð4Þ

Finally, in order to give also an example of a Dead-End Theorem we have to

shift our attention to node 9 in the decision tree for quasigroups of order 3. The

assertion to prove is the following lengthy theorem:

:9AÍ 8a; b 2 A Í 9x; y 2 AÍ a � x ¼ b ^ y � a ¼ b½ �
^ 9b 2 A Í b � b ¼ b½ � ^ :8b 2 A Í b � b ¼ b½ �
^ :9b 2 A Í 8c 2 A Í b � c 6¼ c½ � ^ :9b 2 A Í 8c 2 A Í c � b 6¼ c½ �: ð5Þ

Although the formulation of some of the above theorems is second order, all

theorems can be formulated in propositional logic and passed to a SAT solver,

since we work in a finite domain. We omit a transformation to propositional logic

for Discriminant Theorems, since these theorems hold in general and not only for

algebras of a certain size. Indeed in our experiments in [5] the first-order theorem

prover Spass proved those theorems generally without problems.

The Representant and Nonisomorphic Theorems are relatively simple to prove,

even for structures of large cardinality, since they make statements about

concrete structures (e.g., Q1 and Q2 in our example). Spass was also successful

on these theorems in the experiments described in [5] but struggled and quite

often failed to show Isomorphism-Class Theorems and Dead-End Theorems for

quasigroups of order greater than 4 and loops of order greater than 5.j We shall

therefore concentrate on Theorems 4 and 5 in the remainder of this article.

j In fact, Spass was the only prover that managed to show any of the Isomorphism-Class
and Dead-End Theorems for structures of order greater than 4, which is documented by the

results of the 2004 CASC system competition [21], where these theorems were given as new
entries for the TPTP [22].

208 ANDREAS MEIER AND VOLKER SORGE



3. Specifying Theorems in Propositional Logic

In this section, we present an encoding of the theorems given in the previous

section in propositional logic. While basic ideas for the encoding are taken from

Zhang’s article on the specification of Latin square existence problems in

propositional logic [26], we extended his work in order to deal with more general

and complex properties. We first discuss Zhang’s approach and then generalize it

for our domain. Finally, we explain the generation of different input formats for

the different SAT solvers under consideration.

3.1. AN ENCODING OF LATIN SQUARE PROBLEMS

In [26], Zhang describes the encoding of Latin square existence problems in

propositional logic. That is, his problems are concerned with the question of

whether a Latin square A of a certain cardinality n exists that satisfies particular

properties P1, . . . , Pl, where the properties Pi are of the form

8x1; . . . ; xn 2 A Íx11 � x12 ¼ x13 ^ . . . ^ xl1 � xl2 ¼ xl3 ! xr1 � xr2 ¼ xr3

or

8x1; . . . ; xn 2 A Íx11 � x12 ¼ x13 ^ . . . ^ xl1 � xl2 ¼ xl3 ! xr1 ¼ xr2

with xi1 ; xi2 ; xi3 2 x1; . . . ; xnf g for i ¼ 1; . . . ; l; r. Thus, the properties are

restricted to the use of universal quantifiers only. They consist of simple

equations without nested application of the operation ) and always have only a

simple element on the right-hand side of the equations. In addition, Zhang ex-

presses the Latin square property in this form by

8x; y; u;w 2 A Í x � u ¼ y ^ x � w ¼ y! u ¼ w

8x; y; u;w 2 A Í u � x ¼ y ^ w � x ¼ y! u ¼ w:

This formulation is equivalent to our mathematical formalization of the

quasigroup property for finite cardinalities.

To specify a Latin square existence problem of the above type in

propositional logic, Zhang uses the following transformation steps:

1. The second-order quantifier over a structure A is replaced by using an

arbitrary structure of cardinality n, A = {e1, . . . , en} together with a binary

operation ), where the ei are new constants. In order to make sure that the

structure is indeed of order n, the n elements are explicitly stated to be

distinct by adding the assumption

e1 6¼ e2 ^ e1 6¼ e3 ^ . . . ^ en�1 6¼ en:

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 209



Moreover, for each constant an instance of the reflexivity axiom is added:

e1 = e1 $ . . . $ en = en.

2. To the list of required properties P1, . . . ,Pl which include the formalization

of the Latin square property, the following properties are explicitly added:

8x; y; u;w 2 A Íx � y ¼ u ^ x � y ¼ w! u ¼ w

8x; y 2 A Íx � y ¼ e1 _ . . . _ x � y ¼ en:

The former property is called the unique image property, whereas the latter

is called the closure property. Note that these additional properties also have

only universal quantifiers and consist of simple equations without nested )
operations.

3. All ground instances of the properties P1, . . . ,Pl and the additional properties

with the constants e1, . . . , en of the instantiation of the algebra A are

constructed.

This creates clauses with ground equality, which can already be passed to a

satisfiability solver with a built-in equational theory. In order to obtain a purely

propositional logic formula, the following additional step is necessary:

4. Replace each ground equation ei ) ej = ek by a Boolean variable pijk with i, j,
k = 1 . . . n and replace each occurrence of ei = ek by a Boolean variable qij
with i, j = 1 . . . n.

This results in a Boolean satisfiability problem containing altogether n3 + n2

Boolean variables.

In contrast to the properties and formulas considered by Zhang, the properties

constructed during our classification procedure can be of a more complex nature.

In particular, they can contain

Y (nested) universal and existential quantifiers,
Y terms containing nested ) operations,
Y complex terms, containing applications of ), on the right-hand sides of

equations, and
Y further interpreted symbols such as a special unit element unit.

While we can directly adopt the first two steps of Zhang’s transformations for

our properties, we need to extend steps three and four in order to cope with the

above complications. Moreover, as opposed to the properties considered by

Zhang, our properties do not necessarily result immediately in clausal normal

form after transformation to propositional logic. Hence, we must also explicitly

consider efficient methods of clause normalization.

210 ANDREAS MEIER AND VOLKER SORGE



3.2. ELIMINATION OF QUANTIFIERS

In our properties, the first-order quantifiers ranging over elements of the

instantiated algebra A = {e1, . . . , en} can be both universal and existential.

Moreover, the quantifiers can be arbitrarily nested. In order to eliminate the

quantifiers to obtain ground instances, we have the choice between two different

procedures, which differ wrt. the handling of the existential quantifiers.

The first approach replaces existentially quantified formulas by disjunctions

over the finite set of elements. Universally quantified formulas are replaced by

conjunctions over the finite set of elements. That is, for a given property all

quantified subformulas in P are processed recursively: An existentially

quantified formula 9x 2 A ÍF[x] results in a disjunction of the instantiations,

F[e1] ¦ . . . ¦ F[en], whereas a universally quantified formula 8x 2 A ÍF[x] results
in a conjuction of the instantiations, F[e1] $ . . . $ F[en].

We illustrate the extended quantifier elimination procedure by its application

to property P3 = 9b 2 A Í8c 2 A Íb ) c m c from the decision tree in Figure 2,

where A = {e1, e2, e3}. The procedure first tackles the outside existential

quantifier of P3, which results in the disjunction

8c 2 AÍe1 � c 6¼ c _ 8c 2 AÍe2 � c 6¼ c _ 8c 2 AÍe3 � c 6¼ c:

Afterwards, the three resulting universal quantifiers are tackled, yielding the

following fully grounded formula:

e1 � e1 6¼ e1 ^ e1 � e2 6¼ e2 ^ e1 � e3 6¼ e3ð Þ
_ e2 � e1 6¼ e1 ^ e2 � e2 6¼ e2 ^ e2 � e3 6¼ e3ð Þ
_ e3 � e1 6¼ e1 ^ e3 � e2 6¼ e2 ^ e3 � e3 6¼ e3ð Þ:

An alternative approach to deal with existential quantifiers is Skolemization.

The Skolemization transformation consists of three steps: (1) push all negations

to the literals, (2) replace existential quantifiers by Skolem-functions, and (3) add

formulas expressing the closure of the introduced Skolem-functions. The result is

a formula, which contains only universal quantifiers, which can be replaced by

conjunctions as described above.j

In the example of property P3, Skolemization yields

8c 2 AÍskb � c 6¼ c½ � ^ skb ¼ e1 _ skb ¼ e2 _ skb ¼ e3½ �

j The described procedure introduces Skolem-functions whose arity depends on the

number of universal quantifiers in whose range the original existential quantifier was. An
alternative is the recursive intertwined elimination of universal quantifiers and Skolemization
such that only Skolem-constants, that is, 0-arity functions, have to be introduced.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 211



where skb is the Skolem-function introduced for the variable b. The elimination

of the universal quantifier then yields

skb � e1 6¼ e1 ^ skb � e2 6¼ e2 ^ skb � e3 6¼ e3½ �
^ skb ¼ e1 _ skb ¼ e2 _ skb ¼ e3½ �:

The use of Skolemization instead of a disjunctive treatment of existential

quantifiers generally results in formulas with fewer and less-nested disjunctions

and conjunctions. This is beneficial for the clause normalization described in

Section 3.5 and is indeed helpful for SAT solvers with equational theory such as

CVClite (see results of our experiments in Section 5). However, Skolemization is

counterproductive for purely Boolean satisfiability solvers such as zChaff for

reasons we will explain in Section 3.4.

3.3. FLATTENING

Equations containing terms with nested applications of the operation ) as well as

occurrences of ) operations on right-hand sides of equations can be simplified by

a process, which we call flattening. The idea of flattening is to recursively

replace subexpressions like x ) y by new existentially quantified variables r with
x ) y = r until all occurring equations are of the form x ) y = z.

We demonstrate the flattening procedure with the property of associativity

8a,b,c 2 A Í(a ) (b ) c)) = ((a ) b) ) c). The following stepwise transformation

fully flattens the occurring equations:

8a; b; c 2 AÍ a � b � cð Þð Þ ¼ a � bð Þ � cð Þ
,! 8a; b; c 2 AÍ9z1 2 AÍ b � c ¼ z1ð Þ ^ a � z1ð Þ ¼ a � bð Þ � cð Þ
,! 8a; b; c 2 AÍ9z1; z2 2 AÍ b � c ¼ z1ð Þ ^ a � b ¼ z2ð Þ ^ a � z1ð Þ ¼ z2 � cð Þ
,! 8a; b; c 2 AÍ9z1; z2; z3 2 AÍ b � c ¼ z1ð Þ ^ a � b ¼ z2ð Þ

^ z2 � c ¼ z3ð Þ^ a � z1 ¼ z3ð Þ

Quantifiers introduced by flattening can then be eliminated as described in

Section 3.2.

3.4. AXIOMATIZATION OF EQUATIONAL THEORY

For systems such as zChaff that provide no built-in equational theory, the

necessary equational theory has to be stated explicitly. Zhang’s approach already

contains the encoding of a basic equational theory: step 1 adds the reflexibility of

the new constants ei as well as the condition that they are pairwise distinct. Step

2 introduces the unique image property. These axioms suffice in the general case,

which deals only with fully quantified formulas without interpreted symbols. In

the case of interpreted symbols, however, we have to enrich the formalization by

212 ANDREAS MEIER AND VOLKER SORGE



axioms explicitly specifying further properties of equality with respect to the

given symbol.

For instance, if we are dealing with loops we have to axiomatize equality for

the unit element unit explicitly, by adding the following axioms to our problem

formalization:

8x; y; z 2 AÍ x � y ¼ zð Þ ^ z ¼ unit! x � y ¼ unitð Þ Substitution 1ð Þ
8x; y; z 2 AÍ x � y ¼ zð Þ ^ y ¼ unit! x � unit ¼ zð Þ Substitution 2ð Þ
8x; y; z 2 AÍ x � y ¼ zð Þ ^ x ¼ unit! unit � y ¼ zð Þ Substitution 3ð Þ
8x; y; z 2 AÍ x � y ¼ unitð Þ ^ z ¼ unit ! x � y ¼ zð Þ Substitution 4ð Þ
8x; y; z 2 AÍ x � unit ¼ zð Þ ^ y ¼ unit ! x � y ¼ zð Þ Substitution 5ð Þ
8x; y; z 2 AÍ unit � y ¼ zð Þ ^ x ¼ unit ! x � y ¼ zð Þ Substitution 6ð Þ
unit ¼ unit Reflexibilityð Þ
8x 2 AÍunit ¼ x, x ¼ unit Symmetryð Þ
8x; y 2 AÍunit ¼ x ^ unit ¼ y! x ¼ y Transitivityð Þ

With the introduction of the unit symbol, ground equations of the form ei )
ej = unit, ei ) unit = ej, unit ) ei = ej for i, j = 1 . . . n and unit = ei and ei = unit for
i = 1 . . . n and unit = unit can be created. Hence, to replace the equations by

Boolean variables additional corresponding variables are necessary. Altogether

these are 3n2 + 2n + 1 additional Boolean variables.

In consequence, introducing interpreted symbols adds considerably to the

complexity of the theorem. This increase in complexity is the reason why the

Skolemization approach described in Section 3.2 is not feasible to construct

Boolean satisfiability problems since each new Skolem-function would have to

be fully axiomatized as above. On the other hand, since introduced interpreted

symbols can be used to construct discriminants, they can improve the

bootstrapping algorithm by allowing for further discriminants (see Section 5

for an example of a discriminant with unit). However, since the discriminants

computed in the bootstrapping algorithm never introduce new interpreted

symbols, we restrict the algorithm to the symbols explicity given in the domain

theory, which in our case is only unit.

3.5. CONSTRUCTING CLAUSAL NORMAL FORMS

The properties we are dealing with can contain an arbitrary composition of

logical connectives and quantifiers. This means that the quantifier elimination of

nested universal and existential quantifiers can result in lengthy and nested dis-

junctions and conjunctions of equational literals. In other words, our formulas Y

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 213



contrary to the restricted properties considered in [26] Y are generally not in

clausal normal form after quantifier elimination. Hence, when working with

systems that require normal form as input, such as zChaff or DPLLT, we have to

explicitly perform clause normalization. Because of the nested disjunctions and

conjuctions of equational literals, a naı̈ve clause normalization approach would

suffer from a combinatorial explosion of the number and the length of the

resulting clauses. For our implementation, we adopted clause normalization

techniques from [17] that aim to create small clausal normal forms. The basic

technique is the introduction of additional Boolean variables to suitably break
formulas. This avoids combinatorial explosion but extends the theorem formal-

ization by additional propositional variables.

For instance, consider the formula F1¦F2. A naı̈ve clause normalization would

compute the clause set C1 for F1 and the clause set C2 for F2. The clause set of

F1¦F2 is then the Cartesian product C1 � C2. The following introduction of the

new Boolean variable p, (F1¦p)$(Kp¦F2), is satisfiability preserving but re-

sults in a different set of clauses: If C01 and C02 are the clause sets of F1¦p and

Kp¦F2, respectively, then the clause set of (F1¦p)$(Kp¦F2) is the union

C01 [ C02.
We can further simplify clause normalization by using Skolemization as

discussed in Section 3.2, which reduces the complexity of the formulas resulting

from the quantifier elimination. However, as discussed in the previous

subsection, Skolemization is inappropriate for use with purely Boolean

satisfiability solvers.

3.6. GENERATING DIFFERENT INPUT FORMATS

Since the aim of our formalization is to produce input for different types of SAT

solvers, we conclude the section with a brief description of the transformations

required to produce the different input formats we need. The three systems we

are concerned with Y CVClite, DPLLT, and zChaff Y accept ground first-order

formulas with equality, ground first-order clauses with equality, and purely

Boolean formulas in clausal normal form, respectively. Therefore, all three sys-

tems require the transformation step 1 from Section 3.1, which replaces the quan-

tifiers over algebras A by arbitrary instances of the required cardinality. All three

systems also require the explicit statement of the cardinality of A, that is, that all
elements of the instance of A are distinct, which corresponds to the first part of

step 2 in Section 3.1. From there on, however, CVClite and DPLLT strongly

differ from zChaff with respect to which further transformations are necessary.

Both CVClite and DPLLT have built-in equational theory and accept ground

first-order terms as input. Thus they do not require flattening or axiomatization

of the equational theory or the replacement of ground equations by Boolean

variables. They require only quantifier elimination applied to the properties. For

the elimination of existentially quantified variables, both treatments are possible

214 ANDREAS MEIER AND VOLKER SORGE



since the equational theory for Skolem-functions does not have to be explicity

axiomatized. While DPLLT needs its input in clausal form, and we therefore

have to perform clause normalization, this step can be omitted for CVClite, as it

accepts full formulas as input.

zChaff accepts as input Boolean satisfiability problems in the DIMACS

format, which requires clauses. Hence, to create input for zChaff, the full set of

transformations has to be applied in the following order: flattening, axiomatiza-

tion of equational theory for additional symbols, quantifier elimination (without

the option of Skolemization), replacement of ground equations by Boolean

variables, and clause normalization.

4. Dealing with Isomorphisms

The formalization discussed so far can essentially deal with all properties on

quasigroups that are potentially constructed during the classification process.

However, it is not yet sufficient to fully deal with the most challenging problems

of our domain, the Isomorphism-Class Theorems. As an example of such a

problem, consider again the theorem for node 2 in the decision tree in Figure 2

already given in formula (4):

8AÍ 8a; b 2 AÍ9x; y 2 AÍa � x ¼ b ^ y � a ¼ b½ � ^ :9b 2 AÍb � b ¼ b½ �½ �
! Q1 ffi A

The theorem states that all structures of order 3 satisfying the quasi-group

property and the property KP1 given in Figure 2 are isomorphic to the structure

Q1 (see Figure 1).

Following the transformations introduced in the preceding section we can

start rewriting the theorem by eliminating the universal quantifier on A with an

arbitrary set A = {e1, e2, e3} and adding an explicit encoding of the representant

structure Q1 as additional assumption. This results in the assumptions

e1 6¼ e2 ^ e1 6¼ e2 ^ e2 6¼ e3 Cardinality of Að Þ

8a; b 2 AÍ9x; y 2 AÍa � x ¼ b ^ y � a ¼ b Quasigroup propertyð Þ
:9b 2 AÍb � b ¼ b Classifying property:P1ð Þ
e01�0e01 ¼ e02 ^ e01�0e02 ¼ e01 ^ e01�0e03 ¼ e03

^ e02�0e01 ¼ e01 ^ e02�0e02 ¼ e03 ^ e02�0e03 ¼ e02 Representant Q1ð Þ
^ e03�0e01 ¼ e03 ^ e03�0e02 ¼ e02 ^ e03�0e03 ¼ e01

g

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 215



and a conclusion of the form

9h 2 Q1 7!Af gÍbijective hð Þ ^ homomorphism hð Þ:

Observe that, unlike in Figure 2, we have denoted the elements of Q1 as {e1
0,

e2
0 , e3

0} to avoid confusion with the elements introduced for A. In a similar

manner, )0 denotes the operation on Q1, in order to distinguish it from ), the
operation on A. Note also that the conclusion now states explicitly that there has

to exist a mapping h from the represent Q1 to A that is a bijective homomorphism.

While we can transform all the assumptions into propositional logic using the

techniques discussed in Section 3, translating the conclusion is not that straight-

forward. We have developed three encodings for isomorphisms inside satisfi-

ability problems that we describe in this section. We first present the naı̈ve

approach of enumerating all possible isomorphisms, followed by two more re-

fined approaches that take advantage of computer algebra computations to reduce

the number of isomorphisms.

4.1. NAÏVE APPROACH

The conclusion of the Isomorphism-Class Theorem existentially quantifies over a

mapping h from Q1 to A. Since the structures involved are finite, we can elim-

inate the quantifier by considering all possible mappings between the two

structures. In the general case of structures with cardinality n, there are nn

possible mappings. We can, however, reduce this number immediately by taking

into account that we only have to consider bijective mappings in the first place,

which leaves n! possible mappings. For our example theorem there are six

possible bijections h1, . . . , h6 from Q1 to A:

h1 e01ð Þ ¼ e1; h1 e02ð Þ ¼ e2; h1 e03ð Þ ¼ e3 h2 e01ð Þ ¼ e1; h2 e02ð Þ ¼ e3; h2 e03ð Þ ¼ e2

h3 e01ð Þ ¼ e2; h3 e02ð Þ ¼ e1; h3 e03ð Þ ¼ e3 h4 e01ð Þ ¼ e2; h4 e02ð Þ ¼ e3; h4 e03ð Þ ¼ e1

h5 e01ð Þ ¼ e3; h5 e02ð Þ ¼ e1; h5 e03ð Þ ¼ e2 h6 e01ð Þ ¼ e3; h6 e02ð Þ ¼ e2; h6 e03ð Þ ¼ e1:

Given these six functions the original conclusion can be replaced by

homomorphism h1ð Þ _ homomorphism h2ð Þ _ homomorphism h3ð Þ

_ homomorphism h4ð Þ _ homomorphism h5ð Þ _ homomorphism h6ð Þ:

Here homomorphism (hi) for i = 1, . . . , 6 is an abbreviation for the

homomorphism property 8x,y 2 Q1 Íhi(x )0 y) = hi(x) ) hi(y). Note that we can

216 ANDREAS MEIER AND VOLKER SORGE



omit the bijective property for each hi, since they are bijective by construction.

The quantified variables x and y ranging over Q1 can be eliminated as explained

in Section 3.2, which results in the following conjunction of equations:

hi e
0
1�0e01ð Þ ¼ hi e

0
1ð Þ � hi e01ð Þ ^ hi e

0
1�0e02ð Þ ¼ hi e

0
1ð Þ � hi e02ð Þ ^ hi e

0
1�0e03ð Þ ¼ hi e

0
1ð Þ � hi e03ð Þ

^ hi e
0
2�0e01ð Þ ¼ hi e

0
2ð Þ � hi e01ð Þ ^ hi e

0
2�0e02ð Þ ¼ hi e

0
2ð Þ � hi e02ð Þ ^ hi e02�0e03ð Þ ¼ hi e

0
2ð Þ � hi e03ð Þ

^ hi e
0
3�0e01ð Þ ¼ hi e

0
3ð Þ � hi e01ð Þ ^ hi e

0
3�0e02ð Þ ¼ hi e

0
3ð Þ � hi e02ð Þ ^ hi e

0
3�0e03ð Þ ¼ hi e

0
3ð Þ � hi e03ð Þ:

Since the results of expressions such as ej
0 )0 ek0 are given by the multiplication

table of Q1 we can simplify the left hand sides of the above equations to

hi e
0
2ð Þ ¼ hi e

0
1ð Þ � hi e01ð Þ ^ hi e

0
1ð Þ ¼ hi e

0
1ð Þ � hi e02ð Þ ^ hi e

0
3ð Þ ¼ hi e

0
1ð Þ � hi e03ð Þ

^ hi e
0
1ð Þ ¼ hi e

0
2ð Þ � hi e01ð Þ ^ hi e

0
3ð Þ ¼ hi e

0
2ð Þ � hi e02ð Þ ^ hi e

0
2ð Þ ¼ hi e

0
2ð Þ � hi e03ð Þ

^ hi e
0
3ð Þ ¼ hi e

0
3ð Þ � hi e01ð Þ ^ hi e

0
2ð Þ ¼ hi e

0
3ð Þ � hi e02ð Þ ^ hi e

0
1ð Þ ¼ hi e

0
3ð Þ � hi e03ð Þ:

Finally, for each hi the expression hi(ej
0) can be replace by its image. For

instance, in the case of h1 this yields

e2 ¼ e1 � e1 ^ e1 ¼ e1 � e2 ^ e3 ¼ e1 � e3
^ e1 ¼ e2 � e1 ^ e3 ¼ e2 � e2 ^ e2 ¼ e2 � e3
^ e3 ¼ e3 � e1 ^ e2 ¼ e3 � e2 ^ e1 ¼ e3 � e3:

Note that in the above formula there is no reference to the homomorphisms hi
anymore. And indeed the hi were intermediate concepts only, and the final

conclusion no longer contains them anymore. Similarly, while the final

conclusion describes the structures that are isomorphic to Q1, there is no men-

tion of the actual elements of Q1 anymore. We can therefore also remove the

encoding for the representant Q1 from the assumptions.

Since the resulting formula contains only flat equations, it can be directly

translated into a Boolean satisfiability problem. Thus the naı̈ve approach is

suitable for all the input formats we are interested in generating. It suffers,

however, from combinatorial explosion. For structures of cardinality n there are

n! possible bijective mappings, and each mapping finally results in a conjunction

of n2 equations ei ) ej = ek with i, j, k = 1 . . . n. Hence, altogether the conclusion
results in n!n2 equation literals.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 217



4.2. REPRESENTANT GENERATING SYSTEMS

In order to reduce the complexity of the conclusion for the Isomorphism-Class

Theorems we have developed two encodings that generally result in smaller

encodings. Both are based on the computation of sets of generators and

factorisations to decrease the number of potential isomorphism mappings. A

structure A with binary operation ) is said to be generated by as set of elements

{a1, . . . , am} �A if every element of A can be expressed as a combination Y
usually called a factorisation or word Y of the ai under the operation ). For
example, Q1 in Figure 1, can be generated by element e1

02Q1, as both e2
0 = e1

0 )0

e1
0 and e3

0 = (e1
0 )0 e10))0(e10 )0 e10) can be expressed as factorisations in e1

0. We call a

set of generators together with the corresponding factorisations a generating
system.

Given a generating system, we can exploit the fact that each isomorphism is

uniquely determined by the images of the generators in order to reduce the total

number of isomorphisms we need to consider. If we again consider our example

theorem and the generating system for Q1 we have only three potential map-

pings for the generator e1
0 to the elements of A = {e1, e2, e3}, namely, h1(e1

0) = e1,
h2(e1

0) = e2, h3(e1
0) = e3. Taking the factorizations for e2

0 and e3
0 together with the

homomorphism property, one can complete the mappings as follows:

h1 : h1 e02ð Þ ¼ h1 e01�0e01ð Þ ¼ h1 e01ð Þ � h1 e01ð Þ ¼ e1 � e1

h1 e03ð Þ ¼ h1 e01�0e01ð Þ � 0 e01�0e01ð Þð Þ ¼ h1 e01ð Þ � h1 e01ð Þð Þ � h1 e01ð Þ � h1 e01ð Þð Þ

¼ e1 � e1ð Þ � e1 � e1ð Þ:

For h2 and h3 we get the analogous result, where e1 is replaced by e2 and e3,
respectively. Taking these three potential mappings, one can replace the original

conclusion of the Isomorphism-Class Theorem by the disjunction

homomorphism h1ð Þ ^ bijectives h1ð Þð Þ
_ homomorphism h2ð Þ ^ bijectives h2ð Þð Þ
_ homomorphism h3ð Þ ^ bijectives h3ð Þð Þ:

Here it is necessary to show bijectivity for each mapping, since it is no longer

guaranteed by the construction. Naturally, it suffices to prove injectivity as the

mapping is between finite structures. In other words we have to add that hi(ej
0) m

hi(ek
0 ) for all j m k, or in the concrete case of h1 we add: h1(e1

0) m h1(e2
0) $ h1(e1

0) m
h1(e3

0 )$h1(e2
0 ) m h1(e3

0). These inequalities together with the grounded homo-

morphism properties can then be simplified analogously to the naı̈ve approach in

Section 3.2; that is, we simplify the left-hand sides of the equations and replace

all occurrences of h1(ej
0) by their respective images. This approach eventually

218 ANDREAS MEIER AND VOLKER SORGE



yields the following lenghty conjunction for h1, which has already been sim-

plified by removing redundant conjuncts:

e1 ¼ e1 � e1 � e1ð Þ ^ e1 � e1ð Þ � e1 � e1ð Þ ¼ e1 � ð e1 � e1ð Þ � e1 � e1Þð Þ
^ e1 ¼ e1 � e1ð Þ � e1 ^ e1 � e1ð Þ ¼ e1 � e1ð Þ � e1 e1 � e1ð Þ � e1 � e1ð Þð Þ
^ e1 � e1ð Þ � e1 � e1ð Þ ¼ ð e1 � e1ð Þ � e1 � e1ð ÞÞ � e1
^ e1 ¼ e1 � e1ð Þ � e1 � e1ð Þð Þ � e1 � e1ð Þ � e1 � e1ð Þð Þ
^ e1 6¼ e1 � e1ð Þ ^ e1 6¼ e1 � e1ð Þ � e1 � e1ð Þ ^ e1 � e1ð Þ 6¼ e1 � e1ð Þ � e1 � e1ð Þ:

We have implemented an algorithm to compute a minimal generating system

for a given structure in the computer algebra system Gap [8] (see [5] for more

details on the algorithm). Calls to the algorithm are integrated into the overall

bootstrapping algorithm, which employs it to compute generating systems for

the representants of potential isomorphism classes. Once a generating system is

computed, the bootstrapping algorithm verifies its correctness by showing an

additional theorem that simply checks that the representant in question actually

complies with the generating system. We call this theorem Representant Gensys-
Verification Theorem, but since it is fairly easy to check, we will not go into

details here.

Employing the verified generating system of the representant can reduce the

number of mappings that are candidates for isomorphisms. If n is the cardinality

of the structures and m is the number of generators, then, instead of n!, there are
only n!

n�mð Þ! possible mappings, since only the m generators have to be mapped

explicitly. However, this reduction is only effective when we produce input for

solvers such as CVClite and DPLLT that can deal with the complex terms on

both sides of the ground equations. For the generation of a purely Boolean

encoding for a SAT solver like zChaff, flattening of the equations (see Section

3.3) is required. This, however, introduces new quantifiers, which have to be

eliminated again later. For instance, to flatten the conjunct above, we need two

additional quantified variables x1 and x2 that replace x1 = e1 ) e1 and x2 = x1 )
x1 = (e1 ) e1) ) (e1 ) e1) and whose scope is the complete conjunct. Their

subsequent elimination would result in a disjunction with nine parts, which are

the different instantiations of the variables x1 and x2 in the conjunct. Indeed, we

found that the factor by which the encoding is enlarged is related to the number

m of generators in the computed generating system. When there are m generators,

then there are n�m factorized elements. These n�m factorized elements result

in n�m different terms in the ground equations, which require n � m variables

for flattening. The elimination of these n�m variables leads to a disjunction with

(n�m)n parts, that is, flattening and quantifier elimination enlarges the encoding

by a factor of (n�m)n. This factor clearly outweighs the benefits of the reduction

of isomorphisms, and indeed experiments confirmed that zChaff’s performance

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 219



was worse for this encoding as opposed to the naı̈ve approach. Thus, employing

representant generating systems is not suitable when creating Boolean satisfial-

bility problems.

The use of generating systems is particularly suitable for structures like

quasigroups. In our experiments the algorithm could generally come up with

generating systems of at most two generators, even for quasigroup structures of

cardinality 7. This subsequently led to at most n(n � 1) possible mappings as

opposed to the n! mappings created by the naı̈ve approach. For algebraic

structures that tend to have large generating systems, this approach might be

counterproductive. As an example, consider a semi-group A whose operation

maps every pair of inputs x, y to one element c only. Its only generating system is

A�{c}, which does not decrease the number of possible mappings to consider,

but introduces the additional burden of proving the Representant Gensys-
Verification Theorem. Thus, in theory the computation and usage of generating

systems is generally applicable; however, its practical impact is limited de-

pending on the type of structures considered.

4.3. GENERAL GENERATING SYSTEMS

We will now generalize our notion of generating systems to further simplify

Isomorphism-Class Theorems. The idea is based on the observation that

generating systems are invariants under isomorphism. That is, isomorphic

structures have similar generating systems.

We can exploit this fact in our context as follows. To verify that a node in the

classification tree represents an isomorphism class, we first show that every

structure satisfying the properties of the node also has a generating system

similar to the one for the representant of the node.j We call this the General
Gensys-Verification Theorem, and, having successfully proved it, we can express

the Isomorphism-Class Theorem using the general generating system.

Let’s consider again our representant Q1 together with its generating system

consisting of e1
0 as generator and factorizations e2

0 =e10 )0 e10 and e3
0 = (e1

0 )0 e10) )
(e1
0 )0 e10). From the proof of the General Gensys-Verification Theorem we know

that all structures of the form A = {e1, e2, e3} with operation ) that exhibit the

properties given by the node 2 in the decision tree contain a similar generating

system. Without loss of generality we can fix it as follows. Let e1 be the

generator and let e2 = e1 ) e1 and e3 = (e1) e1) ) (e1 ) e1). Since an isomorphism

is determined by its actions on the generators, we only have to consider the 3

possible mappings of the single generator. However, as opposed to the two

j Clearly, if the node does not represent an isomorphism class, this does not have to be the

case

220 ANDREAS MEIER AND VOLKER SORGE



preceding approaches, this time we consider the possible mappings from A to the

representant Q1:

h1 e1ð Þ ¼ e01 h1 e2ð Þ ¼ e01�0e01 h1 e3ð Þ ¼ e01�0e01ð Þ�0 e01�0e01ð Þ
h2 e1ð Þ ¼ e02 h2 e2ð Þ ¼ e02�0e02 h2 e3ð Þ ¼ e02�0e02ð Þ�0 e02�0e02ð Þ
h3 e1ð Þ ¼ e03 h3 e2ð Þ ¼ e03�0e03 h3 e3ð Þ ¼ e03�0e03ð Þ�0 e03�0e03ð Þ:

We can now replace the right-hand sides of the equations by the values

determined by the multiplication table for Q1, resulting in

h1 e1ð Þ ¼ e01 h1 e2ð Þ ¼ e02 h1 e3ð Þ ¼ e03

h2 e1ð Þ ¼ e02 h2 e2ð Þ ¼ e03 h2 e3ð Þ ¼ e01

h3 e1ð Þ ¼ e03 h3 e2ð Þ ¼ e01 h3 e3ð Þ ¼ e02:

We then remove all mappings that are not bijective. While in our example all

mappings are bijective, when dealing with structures of larger cardinality this

step often reduces the number of mappings considerably. For the remaining

mappings it suffices to show that one of them is a homomorphism to assure that

there is indeed an isomorphism between A and Q1. In other words the

Isomorphism-Class Theorem is replaced by the disjunction

homomorphism h1ð Þ _ homomorphism h2ð Þ _ homomorphism h3ð Þ
As in the previous two approaches we now replace each occurrence of

homomorphism(hi) for i = 1, . . . , 3 with the actual homomorphism property,

eliminate the quantifiers and simplify as far as possible. In the case of the

mapping h1 this yields the following conjunction of equations:

h1 e1 � e1ð Þ ¼ e02 ^ h1 e1 � e2ð Þ ¼ e01 ^ h1 e1 � e3ð Þ ¼ e03

^ h1 e2 � e1ð Þ ¼ e01 ^ h1 e2 � e2ð Þ ¼ e03 ^ h1 e2 � e3ð Þ ¼ e02

^ h1 e3 � e1ð Þ ¼ e03 ^ h1 e3 � e2ð Þ ¼ e02 ^ h1 e3 � e3ð Þ ¼ e01:

Since the resulting equations are of the form h1(ei ) ej) = ek
0 , the left-hand

sides ei ) ej cannot be simplified. However, we can exploit the fact that h1 is

bijective and that the pre-image for each ek
0 is uniquely determined by h1(el) = ek

0 .
Hence, we can replace the right-hand sides of the equations and then drop the

function application of h1:

e1 � e1 ¼ e2 ^ e1 � e2 ¼ e1 ^ e1 � e3 ¼ e3

^ e2 � e1 ¼ e1 ^ e2 � e2 ¼ e3 ^ e2 � e3 ¼ e2

^ e3 � e1 ¼ e3 ^ e3 � e2 ¼ e2 ^ e3 � e3 ¼ e1:

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 221



This final formalization of the isomorphism contains only expressions of the

form ei ) ej = ek, which are a priori flat and are therefore suitable for the

translation into Boolean SAT problems as well. And, as there are at most n!
n�mð Þ! Y

in most cases even fewer Y possible mappings to consider, where m is the

number of generators, the complexity is generally better than in either of the

previous approaches. However, some of the complexity of general generating

systems is actually hidden in the proof of the General Gensys-Verification

Theorem, which we have ignored so far.

In the case of our example the theorem states that any structure A satisfying

the quasigroup property and KP1 has the same generating system as the

representant Q1. The conclusion of the theorem is therefore

9 x1; x2; x3 2 AÍ x1 6¼ x2 ^ x1 6¼ x3 ^ x2 6¼ x3ð Þ ^ x2 ¼ x1 � x1ð Þ
^ x3 ¼ x1 � x1ð Þ � x1 � x1ð Þð Þ:

We can now rearrange and shrink the equations by using the fact that x2 = x1
) x1 holds, and therefore (x1 ) x1) can be replaced by x2 in the equation for x3.
The formula then has the form

9 x1; x2; x3 2 AÍ x1 6¼ x2 ^ x1 6¼ x3 ^ x2 6¼ x3ð Þ
^ x1 � x1 ¼ x2 ^ x2 � x2 ¼ x3ð Þ:

For the expansion of the quantifiers we can exploit the information from the

inequalities to immediately eliminate inconsistent instantations, which gives us

the following six cases.

e1 � e1 ¼ e2 ^ e2 � e2 ¼ e3½ � _ e1 � e1 ¼ e3 ^ e3 � e3 ¼ e2½ �
_ e2 � e2 ¼ e1 ^ e1 � e1 ¼ e3½ � _ e2 � e2 ¼ e1 ^ e1 � e1 ¼ e3½ �
_ e3 � e3 ¼ e1 ^ e1 � e1 ¼ e2½ � _ e3 � e3 ¼ e2 ^ e2 � e2 ¼ e1½ �:

Our computer algebra algorithm always returns generating systems that can

be shrunk such that we always have a fully flat formalization. This makes

formalization of the General Gensys-Verification Theorem well suited for purely

Boolean SAT solvers. Both formalization of the General Gensys-Verification

Theorem and the naı̈ve isoclass transformation consist of n! cases. However, the
complexity of the former is generally better since a case consists of a conjunction

of n � m equations of the form ei ) ej = ek, where n � m is the number of

factorizations. On the contrary, the cases for the naı̈ve transformation consist of

n2 equations of that form. While this means that, when using general generating

222 ANDREAS MEIER AND VOLKER SORGE



systems, the General Gensys-Verification Theorem is the bottleneck, in practice

the approach still behaves better than the naı̈ve approach, as described in the next

section.

5. Experiments and Results

In order to test the usefulness of the different encodings, we have developed, we

have conducted a number of experiments. We were particularly interested in the

following three main question:

How do the different systems compare? We are interested in comparing the

performance of CVClite, DPLLT, and zChaff in order to see whether the addi-

tional effort to transform our theorems from full formulas to clausal normal form

and further to Boolean satisfiability problems is justified. And since our original

motivation to develop encodings for SAT solvers was the limitation of first-order

automated theorem provers in our domain, we are also interested in comparing

the performance of the SAT approach to the first-order theorem prover Spass.

How do the different encodings compare? Here we want to test how useful

the elaborate encodings for Isomorphism-Class Theorems including the compu-

tation of generating systems as opposed to the naı̈ve encoding are. Morerover, we

want to test whether the Skolemization of existential variables has an advantage

over the disjunctive existential quantifier elimination for the systems CVClite

and DPLLT.

How does our approach scale up? This question can be investigated along

two dimensions: On the one hand, the problem size increases with increasing

cardinality of the structures. On the other hand, within the same domain,

problems become increasingly difficult as more and more properties are added

during the classification.

In the remainder of this section we describe the general experimental setup

and then discuss the results. The tables containing the actual results are given in

the Appendix.

5.1. EXPERIMENTAL SETUP

In our experiments we used the solvers DPLLT, CVClite, and zChaff. The input

was prepared in the format of the respective systems as described in full in

Section 3.6. For a comparison with our experiments in [5] we also used Spass,

where Spass received the same specification as input as CVClite.

We applied the systems to satisfiability problems from the following clas-

sification trees:

1. Quasigroups of order 5 (abbreviated as Q5) containing 1,283 isoclass nodes,

66 dead-end nodes and 1,327 branching nodes.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 223



2. Loops of order 6 (Loops6): 109 isoclass nodes, 18 dead-end nodes, and 106

branching nodes.

3. Quasigroups of order 6 (Q6+) with additional property 9x Í8y Í(y ) x) ) (x )
y) = x: 13 isoclass nodes, 2 dead-end nodes and 17 branching nodes.j

4. Quasigroups of order 7 (Q7-qg9) with the additional property QG9 8x Í

8y Í(((y ) x) ) x) ) x) = y : 7 isoclass and 55 branching nodes.

Except for Loops6, the above classification trees are intermediate decision

trees, since the classifications were still running when we started the experiments

with the SAT solvers. Hence, the number of isomorphism classes used in the

experiments in this article is smaller than the actual number. Meanwhile, we

have completed the classification of Q5 and Q6+. While we have also completed

other classifications, for instance, the QG3YQG8 quasigroups of order 6 and 7;

the resulting decision trees were too small to conduct meaningful experiments.

The classifications above, on the other hand, provide a large number of

challenging problems.

To answer our three main questions, we conducted a number of ex-

periments with different settings. The experiments can roughly be divided into

(1) main experiments applying the systems to the problems of all four clas-

sification trees wrt. a common encoding and (2) additional experiments applying
the systems wrt. alternative encodings to problems from selected classification

trees.

(1) In the main experiments we applied zChaff, DPPLT, and CVClite to all

problems of the four classification trees and Spass to the Loops6 and Q6+

problems. As common encoding we took one that is suitable for all systems,

namely the non-Skolemized version of the Isomorphism-Class Theorem formal-

ization with general generating systems from Section 4.3. The results of these

experiments are given in the Tables IIIYV in the Appendix.

For the nodes in the classification trees, we generated and checked the

following problems: for dead-end nodes the Dead-end Theorems (abbreviated by

Deadend-Th in the result tables), for isoclass nodes the general Gensys-

Verification Theorems (Gensys-Th) and the Isomorphism-Class Theorems (Iso-

Th). For branching nodes either the General Gensys-Verification Theorem or the

Isomorphism-Class Theorem does not hold. Hence, there are both General

Gensys-Verification Theorems (BrGsys-Th) and nontheorems (BrGsys-Nth) as

well as Isomorphism-Class Theorems (BrIso-Th) and nontheorems (BrIso-

NTh).

(2) For the comparison of different encodings we applied DPLLT and

CVClite to the Skolemized problems from Q6+ and Q7-qg9. The results are

given in Tables VI and VII. Moreover, we also applied DPLLT, zChaff, and

j
The property is a generalised form of the QG3 property 8x Í; 8y Í (y ) x) ) (x ) y) = x.

224 ANDREAS MEIER AND VOLKER SORGE



CVClite to problems from Q6+ and Q7-qg9 using different formalizations for the

Isomorphism-Class Theorems; these results are given in the Tables VIIIYX. In
these experiments, DPLLT and CVClite were applied to both the formalization

using no generating system, that is, using the naı̈ve isomorphism encoding

described in Section 4.1 (indicated by Withoutgensys in the result tables) and the

formalization with representant generating system as introduced on Section 4.2

(Withrepgensys). zChaff was applied to the Withoutgensys problems only. For

DPLLT and CVClite we also compared the Skolemized and non-Skolemized

versions of these problems.

All experiments were conducted on a cluster of 140 identical Pentium IV

machines, each with 1 GB of main memory, using SUN GridEngine to distribute

the experiments. We ran the systems in a mode that would not record proof

objects or traces in a file. For each single problem in each problem suite the

systems got a time limit of 5 days pure CPU time and a 512 MB memory limit.

While this seems to make for a very long overall time for the experiments

considering the large number of problems and the relatively high failure rate in

the experiments, this can be relativized by the fact that the majority of failed

runs were when experimenting with CVClite, which generally failed because of

reaching the memory limit after just a few hours.

The Tables IIIYX in the Appendix detail the results of the experiments. They

are structured as follows: The first three columns state the problem domain and

the name and number of theorems or non-theorems considered. The subsequent

four columns give timing information in seconds; the minimum and maximum

time needed to successfully solve a problem for the considered problem suite, the

average run time taken only over successful runs in the problem suite, and the

median run time over all runs in the problem suite, including the failed funs that

received the full five day runtime (i.e., 432,000 s) as penalty. The last column

gives the number of problems a system failed to solve for the considered problem

set.

5.2. RESULTS

5.2.1. Comparison of Systems

When comparing the systems_ performances in the main experiments (Tables

IIIYV) we can observe that zChaff was, on average, the fastest system. DPLLT

occasionally outperformed zChaff in minimum run-time (i.e., the fastest

solution to a problem of a given category) but was slower overall. Finally

CVClite and Spass clearly performed worse, in particular considering that they

failed to solve a substantial number of problems. Thus, the results indicate that

zChaff shows the best performance in our domain, followed, with some dis-

tance, by DPLLT. Hence, the encoding of Boolean satisfiability problems for

zChaff pays off to push the solvability horizon in our domain. Moreover, the

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 225



SAT solver zChaff and DPLLT clearly outperform the first-order theorem

prover Spass.

5.2.2. Comparison of Encodings

When looking at different formalizations of the Isomorphism-Class Theorems we

have to first consider which theorems we have to compare. For the formalization

with general generating systems we are required to prove the Isomorphism-Class

Theorems as well as the corresponding general Gensys-Verification Theorems,

where the latter are clearly more difficult. However, for the other two

formalizations, the naı̈ve and the representant generating system formalization,

the Isomorphism-Class Theorem is shown independently and essentially contains

the complexity of the problem. Hence we have to compare the performance of

the systems on the Iso-Th problems for these two formalizations with the

Gensys-Th problems of the main experiments.

For the naı̈ve formalization, DPLLT and CVClite performed worse than for

the other two formalizations: they failed for more problems and for the problems

they solved they needed considerably more time. This result is only partially true

for zChaff. For the Q6+ problems zChaff’s performance was on average exactly

as good for the naı̈ve formalization as for the formalization with general gen-

erating systems. For the Q7-qg9 problems it performs on average worse for the

naı̈ve formalization. This indicates that the disadvantages of the naı̈ve formal-

ization will have more impact for higher cardinalities.

For DPLLT the formalization with representant generating systems clearly

outperforms the formalization with general generating systems wrt. to runtime.

However, for Q7-qg9, DPLLT failed for more Iso-Th problems of this

formalization. Since CVClite fails for almost all Iso-Th and Gensys-Th pro-

blems of Q6+ and Q7-qg9, a substantiated analysis of its performance is not

possible.

Overall these results indicate that the elaborate Isomorphism-Class Theorem

formalizations based on the computation of generating systems outperform

the naı̈ve formalization. A comparison of the formalization with representant

Table I. Characteristic number for Gensys-Th problems in zChaff input.

Problem Class Cardinality Depth of Node # Variables # Clauses Time

Q5 5 1 150 2055 <1

Q5 5 23 352 4531 132

Q6+ 6 1 257 5925 286

Q6+ 6 7 405 6975 4877

Q7-qg9 7 1 2401 20,594 <1

Q7-qg9 7 8 4044 24,907 6345

226 ANDREAS MEIER AND VOLKER SORGE



generating systems as opposed to the formalization with general generating

systems, which is possible for DPLLT and CVClite only, shows no clear

result.

In order to test the impact of Skolemization, CVClite and DPLLT were

applied to Skolemized problems of Q6+ and Q7-qg9. The results are quite

different for the two systems, see Tables VI and VII. On the one hand, CVClite

can solve considerably more problems with Skolemization than without and

is also faster. On the other hand, DPLLT fails on more Skolemized prob-

lems and it needs more time for the problems it solves. The same behavior

can also be observed for Skolemized and non-Skolemized versions of dif-

ferent Isomorphism-Class Theorem formalizations. Hence, there is no clear

result for the impact of Skolemization for the employed SAT solvers in our

domain.

5.2.3. Scalability

The tables in the Appendix do not give a clear scalability result wrt. to run-times

and solved problems such as Bthe higher the cardinality of the classification

tree the more difficult the problems, i.e., the longer the SAT solvers take

and the less problems can be solved.^ Indeed, none of the three SAT solvers

shows a definite increase in maximal, average, and median run-times or in the

number or percentage of failed attempts with increasing cardinality of the

tackled problems.

Instead we can observe a generally very high variance within the set of

problems of a classification tree. For instance, consider the minimal run-time of

less than one second as opposed to the maximal run-time of 266,359 seconds for

DPLLT on Q7-qg9 gensys-Th problems (see Table III). There are essentially two

reasons for this large variance:

Y Some properties introduced during the classification are particularly well

suited for the search procedures of the systems, for instance, the

idempotency property 8x Í x ) x = x. This effect can also be observed by

a comparison of the average results of Loops6 and Q6+. Although both

classifications are concerned with quasigroups of order 6, the performance

of the systems on the problems of these two classes varies considerably.

Whereas the unit property prunes the search rather well, the special

property of Q6+ turned out to be particularly difficult.
Y The deeper a node is in the classification tree, the more properties it

is associated with. For instance, in the Q5 tree there are isoclass nodes

at depth 5 associated with five additional properties and at depth 23

with 23 additional properties. And indeed showing theorems for the

latter takes considerably longer than for the former. Moreover, the

properties can become more complex than in our example classification

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 227



in Figure 2, adding to the complexity of the resulting problems. As

examples consider the following properties from the Q5 and Loops6 trees:

9bÍ9cÍ c � c ¼ bð Þ ^ b � b ¼ cð Þ ^ b � c ¼ unitð Þ ^ c � b ¼ unitð Þ ^ b 6¼ unit

9bÍ9cÍ9dÍ b � c ¼ bð Þ ^ b � b 6¼ cð Þ ^ d � d ¼ bð Þ
8bÍ9cÍ9eÍ c � b ¼ e � eð Þ ^ c � e � eð Þ ¼ bð Þ

To illustrate the impact of the properties on the complexity of the resulting

satisfiability problems, consider the figures characterizing Gensys-Th problems

in zChaff input in Table I. Both the number of Boolean variables and the number

of clauses of the satisfiability problems increase for larger cardinalities and for

nodes deeper in the decision tree. With the increase in complexity the time

necessary to solve the problems also increases. However, we can again observe

that there is not necessarily an increase in time needed wrt. to the cardinality of

the structures involved.

6. Conclusion

We have presented the application of satisfiability solving in the challenging

problem of classification in finite algebra. We have extended existing approaches

to encode quasigroup existence problems for SAT solvers in order to deal with

the more complex properties of our domain. Our developed techniques are not

restricted to our problem domain but are applicable in the general case of

transforming equality problems over finite domains to Boolean satisfiability

problems.

The most challenging problem for our particular domain was to efficiently

encode isomorphism problems by reducing the number of possible isomorphisms

that have to be considered. We solved this by developing two formalizations

employing the concept of generating systems that significantly improve over a

naı̈ve encoding and that are particularly effective in our domain of quasigroups.

This enables us to substitute the first-order theorem provers so far used in our

bootstrapping algorithm for constructing classification theorems by SAT solvers.

The developed encodings are not geared toward only one particular type of

solver but can be used to produce several input formats, which enables us to

employ and experiment with diverse systems, such as zChaff, DPLLT, and

CVClite.

The results of our experiments lead us to three conclusions. (1) SAT solvers

can successfully extend the solvability horizon of our bootstrapping algorithm;

that is, they clearly outperformed the first-order theorem prover Spass. Indeed,

employing SAT solvers instead of Spass has led to new mathematical

classification results such as a full classification theorem for quasigroups of

order 5. (2) Moreover, the developed elaborate formalizations of isomorphism

problems also help to push the solvability horizon of the bootsrapping algorithm

228 ANDREAS MEIER AND VOLKER SORGE



even further, since for the classification of quasigroups the SAT solvers clearly

perform better for the elaborate formalizations than for a naı̈ve formalization. (3)

Overall, the results indicate that zChaff shows the best performance, followed,

with some distance, by DPLLT. Hence, the encoding in the less intuitive input

format of zChaff pays off in our domain. Another advantage of zChaff as

opposed to DPLLT is that it creates a proof trace output for unsatisfiable

problems, which can be checked as a resolution proof by independent proof

checkers. This is an important issue considering that we are interested in fully

verifiable classification theorems.

Future work could include investigating the use of further solvers, for instance

one with integrated computations for specialized mathematical domains [2].

Besides classification wrt. isomorphism it is also worthwhile to consider other

equivalence relations. For instance, in terms of quantitative classifications for

quasigroups and loops representatives for every isomorphism and isotopy class

have been generated up to order 10 [14]. Investigating isotopism classes is even

more interesting from a mathematical viewpoint than isomorphism classes;

however, it might present an even greater challenge from the automated

reasoning side; firstly, because finding appropriate properties strong enough to

discriminate structures with respect to isotopy presents a hard problem for HR,

and second, an easy transfer of our techniques to reduce the number of mappings

between structures to the case of showing isotopy class theorems is not obvious.

Acknowledgements

We would like to thank Simon Colton and Roy McCasland for their cooperation

on the classification of quasigroups, and Albert Oliveras Llunell, Zhaohui Fu,

Clark Barrett, and Thomas Hillenbrand for their support in using the systems

DPLLT, zChaff, CVClite, and Spass, respectively. We also wish to thank the

anonymous reviewers for their detailed and extremely helpful comments.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 229



Appendix

Table III. Main experiments DPLLT.

Domain Problem # Min Max Avg. Median Fail

Q5 BrGsys-NTh 1079 <1 45 1 <1 0

BrGsys-Th 248 <1 310 29 15 0

BrIso-NTh 872 <1 <1 <1 <1 0

BrIso-Th 455 <1 <1 <1 <1 0

Deadend-Th 66 <1 216 25 14 0

Gensys-Th 1283 <1 1692 32 17 0

Iso-Th 1283 <1 1 <1 <1 0

Q6+ BrGsys-NTh 14 1 176 27 15 0

BrGsys-Th 3 520 3924 2319 2515 0

BrIso-NTh 13 <1 3 1 <1 0

BrIso-Th 4 <1 1 <1 <1 0

Deadend-Th 2 578 1736 1157 1157 0

Gensys-Th 13 219 5738 3345 3542 0

Iso-Th 13 <1 3 1 <1 0

Loops6 BrGsys-NTh 81 <1 21 1 <1 0

BrGsys-Th 25 <1 27 7 5 0

BrIso-NTh 79 <1 1 <1 <1 0

BrIso-Th 27 <1 1 <1 <1 0

Deadend-Th 18 <1 14 3 1 0

Gensys-Th 109 <1 25 5 3 0

Iso-Th 109 <1 10 <1 <1 0

Q7-qg9 BrGsys-NTh 55 <1 83 4 1 0

BrIso-NTh 26 <1 1 <1 <1 0

BrIso-Th 29 <1 2 <1 <1 0

Gensys-Th 7 <1 266,359 44,519 170 1

Iso-Th 7 <1 <1 <1 <1 0

Table II. Main experiments Spass.

Domain Problem # Min Max Avg. Median Fall

Q6+ BrGsys-Nth 14 14 135,450 20,515 14,251 0

BrGsys-Th 3 Y Y Y 432,000 3

BrIso-NTh 13 8 814 319 359 0

BrIso-Th 4 534 22,960 6732 1717 0

Deadend-Th 2 Y Y Y 432,000 2

Gensys-Th 13 96,436 96,436 96,436 432,000 12

Iso-Th 13 22 190,746 20,315 475 1

Loops6 BrGsys-NTh 81 <1 271,606 3692 1 2

BrGsys-Th 25 3 63,898 10,129 432,000 17

BrIso-NTh 77 <1 186,248 3732 2 6

BrIso-Th 29 <1 166,906 10,426 5 6

Deadend-th 18 27 94,713 10,058 5500 6

Gensys-Th 109 <1 100,611 5904 432,000 56

Iso-th 109 <1 363,181 26,907 699 27

230 ANDREAS MEIER AND VOLKER SORGE



Table IV. Main experiments CVClite.

Domain Problem # Min Max Avg. Median Fail

Q5 BrGsys-NTh 1079 <1 20,184 261 169 98

BrGsys-Th 248 6 17,634 1788 432,000 128

BrIso-NTh 872 <1 393 11 4 2

BrIso-Th 455 <1 211 18 8 2

Deadend-Th 66 <1 392,345 13,907 34,560 27

Gensys-Th 1283 <1 20,462 670 432,000 777

Iso-Th 1283 <1 806 20 8 0

Q6+ BrGsys-NTh 14 951 951 951 432,000 13

BrGsys-Th 3 Y Y Y 432,000 3

BrIso-NTh 13 114 6136 2178 3712 4

BrIso-Th 4 3256 3256 3256 432,000 3

Deadend-Th 2 Y Y Y 432,000 2

Gensys-Th 13 Y Y Y 432,000 13

Iso-Th 13 266 3464 1082 432,000 7

Loops6 BrGsys-NTh 81 1 5131 378 604 29

BrGsys-Th 25 15 13,866 1974 432,000 13

BrIso-NTh 79 1 31,156 701 102 4

BrIso-Th 27 2 1711 330 127 0

Deadend-Th 18 10 87,957 21,221 432,000 10

Gensys-Th 109 <1 20,776 1671 4022 45

Iso-Th 109 8 3515 333 812 29

Q7-qg9 BrGsys-NTh 55 30 7831 785 913 19

BrIso-NTh 26 12 22,263 1412 58 0

BrIso-Th 29 3 3292 216 107 6

Gensys-Th 7 12 2485 1026 432,000 4

Iso-Th 7 2 64 23 16 0

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 231



Table V. Main experiments zChaff.

Domain Problem # Min Max Avg. Median Fail

Q5 BrGsys-NTh 1079 <1 4 <1 <1 0

BrGsys-Th 248 <1 97 12 6 0

BrIso-NTh 872 <1 <1 <1 <1 0

BrIso-Th 455 <1 <1 <1 <1 0

Deadend-Th 66 <1 75 11 5 0

Gensys-Th 1283 <1 132 13 7 0

Iso-Th 1283 <1 <1 <1 <1 0

Q6+ BrGsys-NTh 14 <1 7 2 2 0

BrGsys-Th 3 1590 2966 2392 2619 0

BrIso-NTh 13 <1 5 2 2 0

BrIso-Th 4 3 6 4 4 0

Deadend-Th 2 1685 2182 1933 1933 0

Gensys-Th 13 286 4877 2350 2387 0

Iso-Th 13 <1 12 5 5 0

Loops6 BrGsys-NTh 81 <1 1 <1 <1 0

BrGsys-Th 25 <1 13 3 3 0

BrIso-NTh 77 <1 <1 <1 <1 0

BrIso-Th 29 <1 <1 <1 <1 0

Deadend-Th 18 <1 8 1 1 0

Gensys-Th 109 <1 11 2 2 0

Iso-Th 109 <1 <1 <1 <1 0

Q7-qg9 BrGsys-NTh 55 <1 1029 300 255 0

BrIso-NTh 26 <1 <1 <1 <1 0

BrIso-Th 29 <1 2 <1 <1 0

Gensys-Th 7 <1 6345 2846 2604 0

Iso-Th 7 <1 <1 <1 <1 0

Table VI. Skolemization experiments DPLLT.

Domain Problem # Min Max Avg. Median Fail

Q6+ Skolem BrGsys-NTh 14 <1 109 17 5 0

BrGsys-Th 3 46,692 82,812 68,019 74,554 0

BrIso-NTh 13 <1 <1 <1 <1 0

BrIso-Th 4 <1 <1 <1 <1 0

Deadend-Th 2 716 716 716 216,358 1

Gensys-Th 13 273 185,391 94,458 166,908 4

Iso-Th 13 <1 4 1 <1 0

Q7-qg9 Skolem BrGsys-NTh 55 <1 230 18 2 0

BrIso-NTh 26 <1 <1 <1 <1 0

BrIso-Th 29 <1 3 <1 <1 0

Gensys-Th 7 <1 33,254 11,129 432,000 4

Iso-Th 7 <1 <1 <1 <1 0

232 ANDREAS MEIER AND VOLKER SORGE



Table VII. Skolemization experiments CVClite.

Domain Problem # Min Max Avg. Median Fail

Q6+ Skolem BrGsys-NTh 14 9 414 104 62 0

BrGsys-Th 3 Y Y Y 432,000 3

BrIso-NTh 13 9 110 34 23 0

BrIso-Th 4 21 51 31 26 0

Deadend-Th 2 Y Y Y 432,000 2

Gensys-Th 13 2828 5981 3764 5981 6

Iso-Th 13 22 111 57 61 0

Q7-qg9 Skolem BrGsys-NTh 55 49 4227 500 265 1

BrIso-NTh 26 11 83 40 34 0

BrIso-Th 29 19 1116 156 58 0

Gensys-Th 7 13 624 318 432,000 5

Iso-Th 7 <1 94 32 29 0

Table VIII. Different isomorphism formalization experiments DPLLT.

Domain Special Problem # Min Max Avg. Median Fail

Q6+ Withoutgensys BrIso-NTh 17 <1 155 29 7 0

Iso-Th 13 259 10,712 3526 3412 1

Withoutgensys+

Skolem

BrIso-NTh 17 <1 135 16 4 0

Iso-Th 13 457 142,264 89,217 114,334 3

Withoutgensys BrIso-NTh 17 1 386 145 139 0

Iso-Th 13 1 308 103 2448 0

Withoutgensys+

Skolem

BrIso-NTh 17 1 308 174 143 1

Iso-Th 13 131 82,404 27,069 19,256 2

Q7-qg9 Withoutgensys BrIso-NTh 20 Y Y Y 432,000 20

Iso-Th 7 <1 <1 <1 432,000 5

Withoutgensys+

Skolem

BrIso-NTh 20 Y Y Y 432,000 20

Iso-Th 7 Y Y Y 432,000 7

Withoutgensys BrIso-NTh 55 <1 318 28 6 0

Iso-Th 7 33 663 313 663 3

Withoutgensys+

Skolem

BrIso-NTh 55 <1 204 32 9 0

Iso-Th 7 183 211,297 105,740 432,000 5

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 233



References

1. Alur, R. and Peled, D. (eds.): Proc. of Computer Aided Verification, 16th International
Conference, CAV 2004, Vol. 3114 of LNCS, Springer, 2004.

2. Audemard, G., Bertoli, P., Cimatti, A., Kornil�owicz, A. and Sebastiani, R.: Integrating

Boolean and mathematical solving: foundations, basic algorithms and requirements, in Proc.
of CALCULEMUS-2002, Vol. 2385 of LNAI, 2002.

3. Barrett, C. and Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity

Checker, in [1], 2004, pp. 515Y518.
4. Colton, S.: The HR program for theorem generation, in [23], 2002.

5. Colton, S., Meier, A., Sorge, V. and McCasland, R.: Automatic generation of classification

theorems for finite algebras, in Proc. of IJCAR 2004, Vol. 3097 of LNAI, 2004, pp. 400Y414.
Springer.

Table IX. Different isomorphism formalization experiments CVClite.

Domain Special Problem # Min Max Avg. Median Fail

Q6+ Withoutgensys BrIso-NTh 17 526 526 526 432,000 16

Iso-Th 13 Y Y Y 432,000 13

Withoutgensys+

Skolem

BrIso-NTh 17 13 506 87 42 0

Iso-Th 13 2798 7172 3988 432,000 8

Withoutgensys BrIso-NTh 17 767 767 767 432,000 16

Iso-Th 13 Y Y Y 432,000 13

Withoutgensys+

Skolem

BrIso-NTh 17 8 105 33 27 0

Iso-Th 13 1639 6374 3883 432,000 8

Q7-qg9 Withoutgensys BrIso-NTh 20 58 805 232 291 6

Iso-Th 7 17 1307 455 432,000 4

Withoutgensys+

Skolem

BrIso-NTh 20 56 2700 437 187 0

Iso-Th 7 45 610 327 432,000 5

Withoutgensys BrIso-NTh 55 14 5726 623 471 20

Iso-Th 7 42 2749 1395 432,000 5

Withoutgensys+

Skolem

BrIso-NTh 55 21 2373 374 163 0

Iso-Th 7 317 8900 3582 432,000 4

Table X. Different isomorphism formalization experiments zChaff.

Domain Problem # Min Max Avg. Median Fail

Q6+ Withoutgensys BrIso-NTh 17 <1 4 1 <1 0

Iso-Th 13 476 3068 2092 2105 0

Q7-qg9 Withoutgensys BrIso-NTh 55 <1 14 2 1 0

Iso-Th 7 341 44,092 11,264 6194 2

234 ANDREAS MEIER AND VOLKER SORGE



6. Fujita, M., Slaney, J. and Bennett, F.: Automatic generation of some results in finite algebra,

in Proc. IJCAI-13, 1993, pp. 52Y57.
7. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A. and Tinelli, C.: DPLL(T): Fast

Decision Procedures, in [1], 2004, pp. 175Y188.
8. Gap: GAP Reference Manual, The GAP Group, School of Mathematical and Computational

Sciences, University of St. Andrews, 2000.

9. Gomes, C. P., Selman, B., Crato, N. and Kautz, H.: Heavy-tailed phenomena in satisfiability

and constraint satisfaction problems, J. Autom. Reason. 24 (2000), 67Y100.
10. Kunen, K: Single axioms for groups, J. Autom. Reason. 9(3) (1992), 291Y308.
11. McCune, W.: Single axioms for groups and Abelian groups with various operations,

J. Autom. Reason. 10(1) (1993), 1Y3.
12. McCune, W.: A Davis-Putnam program and its application to finite first order model search:

quasigroup existence problems. Technical report ANL/MCS-TM-194, Argonne National

Laboratory, Division of MSC, 1994.

13. McCune, W.: Mace4 Reference Manual and Guide, Argonne National Laboratory. ANL/

MCS-TM-264, 2003.

14. Mckay, B. D., Meinart, A. and Myrvold, W.: Counting small Latin squares, in European
Women in Mathematics Int. Workshop on Groups and Graphs, 2002, pp. 67Y72.

15. McKay, B. D. and Wanless, I. M.: The number of Latin squares of order eleven. Submitted

for publication. Available at http://cs.anu.edu.au/~bdm/papers/1s11.pdf.

16. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Chaff: engineering an

efficient SAT solver, in Proc. of the Design Automation Conference, 2001, pp. 530Y535.
17. Nonnengart, A. and Weidenbach, C.: Computing small clause normal forms, in Handbook of

Automated Reasoning, Elsevier, 2001.
18. Pflugfelder, H. O.: Quasigroups and Loops: Introduction, Vol. 7 of Sigma Series in Pure

Mathematics, Helderman Verlag, 1990.

19. Slaney, J.: FINDER, Notes and Guide, Center for Information Science Research Australian

National University, 1995.

20. Slaney, J., Fujita, M. and Stickel, M. E.: Automated reasoning and exhaustive search:

quasigroup existense problems, Comput. Math. Appl. 29 (1995), 115Y132.
21. Sutcliffe, G.: The IJCAR-2004 Automated Theorem Proving Competition, AI

Communications 18(1) (2005), 33Y40.
22. Sutcliffe, G. and Suttner, C.: The TPTP problem library: CNF release v1.2.1, J. Aut. Reason.

21(2) (1998), 177Y203.
23. Voronkov, A. (ed.): Proc. of the 18th International Conference on Automated Deduction

(CADE-18), Vol. 2392 of LNAI, Springer, 2002.
24. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C. and Topic, D.: SPASS

Version 2.0. in [23], pp. 275Y279.
25. Zhang, H.: SATO: an efficient propositional prover, in Proc. of CADE-14, vol. 1249 of LNAI,

1997, pp. 272Y275.
26. Zhang, H.: Specifying Latin squares in propositional logic, in Automated Reasoning and Its

Applications, Essays in honor of Larry Wos, MIT Press, 1997.

27. Zhang, H., Bonacina, M. P. and Hsiang, J.: PSATO: a distributed propositional prover and its

application to quasigroup problems, J. Symb. Comput. 21 (1996), 543Y560.
28. Zhang, H. and Hsiang, J.: Solving open quasigroup problems by propositional reasoning, in

Proc. of Int. Computer Symposium, Hsinchu, Taiwan, 1994.
29. Zhang, J. and Zhang, H.: SEM User’s Guide, Department of Computer Science, University of

Iowa, 2001.

APPLYING SAT SOLVING IN CLASSIFICATION OF FINITE ALGEBRAS 235



The SAT-based Approach to Separation Logic

ALESSANDRO ARMANDO, CLAUDIO CASTELLINI,

ENRICO GIUNCHIGLIA and MARCO MARATEA
DIST, University of Geneva, Viale F. Causa, 13-16145 Geneva, Italy.
e-mail: {armando, drwho, enrico, marco}@dist.unige.it

Abstract. The SAT-based approach to the decision problem for expressive, decidable, quantifier-

free first-order theories has been investigated with remarkable results at least since 1993. One such

theory, successfully employed in the formal verification of complex, infinite state systems, is

Separation Logic (SL), which combines Boolean logic with arithmetic constraints of the form x j
y ( c, where ( is e, <, >, Q, =, or m. The SAT-based approach to SL was first proposed and

implemented in 1999: the results in terms of performance were good, and since then a number of

other systems for SL have appeared. In this paper we focus on the problem of building efficient

SAT-based decision procedures for SL. We present the basic procedure and four optimizations that

improve dramatically its effectiveness in most cases: (a) IS2 preprocessing, (b) early pruning, (c)

model reduction, and (d) best reason detection. For each technique we give an example of how it

might improve the performance. Furthermore, for the first three techniques, we give a pseudo-code

representation and formally state the soundness and completeness of the resulting optimized

procedure. We also show how it is possible to check the satisfiability of valuations involving

constraints of the form x j y < c using the BellmanYFord algorithm. Lastly, we present an

extensive comparative experimental analysis, showing that our solver TSAT++, built along the

lines described in this paper, is currently the state of the art on various classes of problems,

including randomly generated, hand-made, and real-world instances.

Key words: SAT-based decision procedures, separation logic.

1. Introduction

The SAT-based approach to satisfiability problems beyond propositional logic

dates back to at least the early 1990s (Armando and Giunchiglia, 1993), when it

was noted that, under some suitable conditions, the problem of determining the

satisfiability of any decidable, quantifier-free first-order theory can be reduced to

Boolean search coupled with a satisfiability procedure (i.e., procedure capable of

deciding whether any given set of literals in satisfiable or not w.r.t. the given

theory). In more detail, the SAT-based approach to the satisfiability problem of a

formula � in a theory T amounts to using:

Y a SAT solver to generate a valuation m entailing � in propositional logic,

and
Y a satisfiability procedure to test whether m is satisfiable in the theory T,

Journal of Automated Reasoning (2005) 35: 237Y263
DOI: 10.1007/s10817-005-9002-1

# Springer 2005



till a satisfiable m is found (in which case also � is satisfiable), or a set of

valuations whose disjunction is logically equivalent to � has been generated and

tested (in which case � is unsatisfiable). Over the years, the SAT-based approach

has been applied to more theories and even to different problems, such as pro-

positional modal logics (Giunchiglia and Sebastiani, 1996; Giunchiglia et al.,

2002), conformant planning (Castellini et al., 2003), and combination of ex-

pressive theories (Stump et al., 2002), with remarkable results. As the research

proceeded, it became clear that the approach could harvest the technological

improvements achieved in propositional satisfiability. See (Armando et al., 2005b)

for a unifying perspective on the SAT-based approach.

Many verification and scheduling problems involve arithmetic constraints of

the form x j y ( c, where x and y are variables ranging over the reals or the

integers and ( is e, <, >, Q, =, or m. These constraints are called separation
terms by Pratt (Pratt, 1977), and Separation Logic (from now on, SL) is the name

now used to denote the logic allowing for arbitrary Boolean combination of

separation terms.j SL is also called Bdifference logic[ by some authors (see,

e.g., Cotton et al., (2004)) and can be seen as a generalization of a well-known

framework for temporal reasoning, the Temporal Constraint Network, introduced

by Decther, Meiri and Pearl (Dechter et al., 1989). SL is the logic we focus on in

this paper.

The first application of the SAT-based approach to a significant fragment of SL

was given in Armando et al. (1999). In this case, as well as with modal logics and

conformant planning, excellent results were obtained. Since then, a number of

other systems for SL have appeared (see, e.g., Oddi and Cesta, 2000; Audemard

et al., 2002; Strichman et al., 2002; Armando et al., 2005a; Cotton et al., 2004).

In this paper we focus on the problem of building efficient SAT-based de-

cision procedures for SL. To this end, we present the basic procedure and four

optimizations that improve dramatically its effectiveness in most cases: (a) IS2
preprocessing, (b) early pruning, (c) model reduction, and (d) best reason detec-

tion. Optimizations (a) and (b) were first proposed in Armando et al. (1999),

whereas (c) and (d) have been presented for the first time in Armando et al.

(2005a). For each technique we give an example of how it might improve per-

formance. Furthermore, for the first three techniques, we give a pseudo-code

representation and formally state the soundness and completeness of the cor-

responding procedure. We also show how it is possible to check the satisfiability

of valuations involving constraints of the form x j y < c using the well-known

BellmanYFord algorithm (from now on, BF).

We then present an extensive comparative experimental analysis, showing

that our solver TSAT++, built along the theoretical lines of the approach, is

j Unfortunately, the name Separation Logic is also used to denote an extension of Hoare
logic. Strichman et al. (2002) is the first reference we are aware of where the name is resumed
from Pratt’s paper.

238 ALESSANDRO ARMANDO ET AL.



currently the state of the art on various classes of problems, including randomly

generated, hand-made, and real-world instances.

The paper is structured as follows. Section 2 is about SL and presents its

syntax, semantics, and some other formal properties of SL; Section 3 introduces

the basic SAT-based procedure for SL, while the optimizations are presented in

Section 4; in Section 5 we present a satisfiability algorithm for valuations based

on BF; in Section 6 we describe the actual implementation of our system and

present a thorough experimental evaluation; in Section 7 we outline the related

work; lastly, in Section 8 we have the conclusions.

2. Theoretical Background

In this section we give some theoretical background and fix the terminology that

will be used throughout the paper.

2.1. SEPARATION LOGIC

2.1.1. Syntax

Let V and P be two disjoint sets of symbols, called variables and propositional
letters, respectively. A constraint is an expression of the form x j y ( c, where
x; y 2 V, (2 {e, <, >, Q, =, m} and c is a numeric constant. The notations x (
y + c and x j c ( y will also be freely used in place of x j y ( c. An atom is

either a constraint or a propositional letter. A formula is a combination of atoms

via the unary connective BK[ for negation and the n-ary connectives B$[ and B¦[
(n Q 0) for conjunction and disjunction, respectively. We will write B and ± for

the empty conjunction and the empty disjunction, respectively. A literal is either
an atom or its negation. If a is an atom, then ā abbreviates Ka and :a stands for a.

EXAMPLE 1. In Bryant et al. (2002), the case-study is introduced of a bounded

model checking problem for the memory unit of the Motorola Elf microproces-

sor. The unit is initially modeled as 20 K lines of VERILOG, with 80 integer-

valued variables and 70 propositional letters. After some translation stages, the

problem is reduced to checking satisfiability of a formula in SL, a fragment of

which, call it �Elf, looks like this:

p1 _ K VPred ¼ IRRð Þð Þ ^
Kp1 _ VPred ¼ IRRð Þ ^
Kp2 _ VPred < IRR þ 1ð Þ ^
p2 _ K VPred < IRR þ 1ð Þð Þ ^
p3 _ p4ð Þ ^
p3 _ Kp4 _ KVenI

0 ¼ VenIð Þ ^
p5 _ K VenI0 þ 2 ¼ VenIð Þð Þ ^
Kp5 _ VenI0 þ 2 ¼ VenIð Þ

THE SAT-BASED APPROACH TO SEPARATION LOGIC 239



In the above formula, VPred, IRR, VenI, VenI
0 are variables and p1, p2, p3, p4,

p5 are propositional letters. VPred < IRR + 1 is a constraint, and p5 and K(VenI0 +
2 = VenI) are literals.

2.1.2. Semantics

Let the set D (domain of interpretation) be either the set of the real numbers R or

the set of integers Z. An assignment is a total function mapping variables to D
and propositional letters to the truth values false and true, standing for falsehood

and truth respectively.

Let s be an assignment and � be a formula. Then s î � (s satisfies a formula
�) is defined as follows.

s î x j y ( c if and only if s(x) j s(y) ( c,
s î p with p 2 P if and only if s(p) = true,
s î K� if and only if it is not the case that s î �,
s î ($i=1

n �i) if and only if for each i 2 [1, n], s î �i, and
s î (¦i=1

n �i) if and only if for some i 2 [1, n], s î �i.

If s î �, then s will also be called a model of �. We also say that

Y a formula � is satisfiable if and only if there exists an assignment satisfying

it;
Y a formula � is valid if and only if every assignment satisfies it;
Y two formulas � and  are logically equivalent if and only if the formula

(K� ¦  ) $ (� ¦ K ) is valid.

Here we consider the problem of deciding whether a formula is satisfiable or

not in the given domain of interpretation D. Notice that satisfiability of a formula

depends on D, e.g., x j y > 0 $ x j y < 1 is clearly satisfiable if D is R but

unsatisfiable if D is Z. However, the problems of checking satisfiability in Z and

R are closely related and will be treated uniformly almost always. Therefore,

from now on, we will drop the distinction, and we will reintroduce it only when

needed.

EXAMPLE 2. Consider Example 1. �Elf is satisfiable, and a model is s = {p1 [
true, VPred [ 12, IRR [ l2, p2 [ true, p3 [ true, p4 [ true, p5 [ true, VenI [
10, VenI0[ 8}.

2.2. VALUATIONS

A valuation is a finite set m of literals such that for each atom a, if a 2 m
then Ka =2 m. In the following if m is a valuation, then by m we also denote

240 ALESSANDRO ARMANDO ET AL.



the formula ^l2�l. Context will make clear what is intended. Moreover, we say

that

1. a valuation m propositionally entails a formula � if (Km $ �) can be proved

in propositional logic;

2. two formulas are propositionallly logically equivalent if one formula pro-

positionally entails the other, and vice versa.

The following result shows the importance of valuations.

THEOREM 3. A formula � is satisfiable if and only if there exists a valuation m
such that

1. m is satisfiable,
2. all atoms in m occur in �, and
3. m propositionally entails �.

Proof. The right-to-left direction is trivial. For the left-to-right direction, first

notice that it is always possible to convert � to a logically equivalent formula in

the same atoms and in disjunctive normal form (DNF). Let S be the set of

disjuncts in the DNF. Then by the semantics of $ it follows that � is satisfiable if

and only if there is m 2 S such that m is satisfiable. Furthermore, for such m, also
the second and third properties hold. Ì

Given the above result, in order to check the satisfiability of a formula �, the
issue becomes that of efficiently building a set S of valuations that is

propositionally complete for �, that is, such that the disjunction of the valuations

in S is propositionally logically equivalent to �. Given such a set, we can then

separately check the satisfiability of its elements.

3. The SAT-based Approach to Separation Logic

Theorem 3 lays the foundation of a simple method for determining the satis-

fiability of a formula �:

1. generate a set S of valuations that is propositionally complete for �, and
then

2. test whether at least one of the valuations in S is satisfiable: if this is the case,

then � is satisfiable; otherwise � is unsatisfiable.

Further, if one valuation m in S is satisfiable, then the models of m are also

models of �. Thus, in the above schema, the problem of finding a model of an

arbitrary formula has been reduced to the problem of finding a model of a

THE SAT-BASED APPROACH TO SEPARATION LOGIC 241



valuation. Notice that the ability to return a model if the formula is satisfiable is

highly desirable in many applications. For example, if the formula represents an

instance of a bounded model-checking problem, then from any model of the

formula it is usually possible to extract a trace witnessing the violation of the

desired property.

The reason why this method has become quite popular is that state-of-the-art

SAT solvers can be employed to efficiently generate valuations on-the-fly. In

fact, valuations propositionally entailing the formula can be generated one by

one, and each can then be checked for satisfiability before generating the next

one, until a positive answer is returned, or there are no more valuations left. This

way the need to generate all (potentially exponentially many) satisfying valu-

ations beforehand is avoided. This is the foundation of the SAT-based approach,

first envisioned in Armando and Giunchiglia (1993) and first applied to SL in

Armando et al. (1999).

The reasons of its success are at least three:

1. more than 40 years of research on propositional satisfiability have made SAT

solvers reliable, efficient and, in some cases, reusable;

2. the two phases, namely, enumeration and satisfiability checking, can be ef-

fectively decoupled, nevertheless allowing for a great deal of search guid-

ing information to flow between the modules that take care of each phase;

3. the range of theories this approach can tackle is quite wide and interesting.

In the rest of this section we give a precise characterization of the SAT-based

approach and prove its fundamental properties.

Without loss of generality, in the following we assume that all formulas

are in conjunctive normal form (CNF) and do not contain any constraint

of the form x j y j c or x j y m c. Constraints of the form x j y = c and x j y
m c can be always replaced by the logically equivalent formulas (xjy e c) $ (x
j y Q c) and (x j y > c) ¦ (x j y < c) respectively. Further, by using the

structure-preserving clause form transformation described in, for example,

Tseitin, 1970; Plaisted and Greenbaum, 1986, translation in CNF can be done

efficiently. Given the CNF assumption, a formula is represented as a conjunc-

tively intended set of clauses, each clause being a disjunctively intended set of

literals.

3.1. BASIC PROCEDURE

A pseudo-code description of a procedure that can be used to carry out the

propositional analysis phase is given in Figure 1. It is essentially the Davis,

Logemann and Loveland algorithm (from now on, DLL) (Davis et al., 1962) for

propositional satisfiability extended in such a way to support the enumeration of

all the valuations propositionally entailing the input formula.

242 ALESSANDRO ARMANDO ET AL.



In the procedure:

1. Simplify (l, �) simplifies the formula � under the assumption that the literal

l is true. This is done by removing from � all clauses in which l appears and
by moving l from all clauses in which l appears;

2. ChooseLiteral(�) picks a literal l in � according to some heuristic function.

Notice that if � = ;, then the current valuation, m, is printed and FALSE is

returned so as to force backtracking.

There is strong empirical evidence in the literature (see, e.g., Le Berre and

Simon (2003)) that DLL is the current best among the complete algorithms for

solving the SAT problem. A number of improvements to DLL have been

proposed, especially on the heuristic function used in ChooseLiteral(�), on the

data structures employed, on the way unit propagation and backtracking are

performed, but the basic algorithm still stands unchanged.

LEMMA 4 (DLL as an enumerator). Let � be a propositional formula.
DLL_ENUM(�, B) prints a set of valuations that is propositionally complete
for �.

Proof. The statement is proved in Giunchiglia et al. (2002). Ì

DLL_ENUM(�,m) can be readily turned into a decision procedure for SL as

shown in Figure 2. The modifications are limited to the case in which � = ;
Instead of printing m and unconditionally returning FALSE, we now return the

result of invoking SatCheck(m), where SatCheck(m) is a satisfiability procedure

for valuations, that is, it returns TRUE if m is satisfiable, and FALSE otherwise. This

procedure clearly depends on the decidable theory under consideration. As we will

see in Section 5, a satisfiability procedure for SL valuations can be readily built

by using BF, which runs in polynomial time (see, e.g., Cormen et al. (2001)).

THEOREM 5 (Soundess and completeness of TSAT). Let � be a formula. Then
TSAT (�, B) returns TRUE if � is satisfiable, and FALSE otherwise.

Proof. It readily follows from Theorem 3, from the soundness and com-

pleteness of the DLL algorithm, and from Lemma 4. Ì

Figure 1. DLL algorithm as enumerator.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 243



EXAMPLE 6. Once again, let us consider Example 1. Assume, moreover, that

ChooseLiteral simply returns the first atom in lexicographical order. Then here is

how TSAT (�Elf, B) works:

1. since there are no unit clauses, p1 is chosen and m = {p1};
2. after Simplify (p1, �Elf) is executed, the second clause has become unit since

Kp1 has been removed from it; therefore VPred = IRR is detected as appearing

in a unit clause and added to m;
3. same as Items 1 and 2, but with p2 and VPred < IRR + 1; now m = {p1,

VPred =IRR,p2,VPRED < IRR + 1};

4. again, there are no unit clauses, and therefore p3 is chosen and added to m;
5. after Simplify (p3, �Elf) is executed, no unit clauses are left, so p5 is chosen

and added to m;
6. lastly, VenI0 + 2 = VenI is detected in a unit clauses and added to m where

now {p1, VPred = IRR,p2, VPred < IRR +1, p3, p5, VenI
0 + 2 = VenI};

7. �Elf has now become empty; SatCheck is called and a model of m, which also

is a model of �Elf, is found, for instance, the model in Example 2.

4. Optimizations

The clear separation between the enumeration of valuations propositionally

entailing � and the check of their satisfiability is the key feature of the SAT-

based approach to building decision procedure. However, the naı̈ve application

of this idea may suffer from the generation of exponentially many unsatisfiable

valuations. The reason for this inefficiency is that the SAT solver is not aware of

the properties of the background theory, in our case SL. To illustrate this point,

let us again consider the problem of Example 1. If VPred = IRR is assigned to true

then it is pointless to assign false to VPred < IRR + 1 as this valuation (or any

extension thereof) will be later found to be unsatisfiable and hence rejected by

SatCheck.

As a matter of fact most optimizations to the basic procedure that have been

proposed in the literature aim at preventing the generation of unsatisfiable (and

hence useless) valuation. In this section we described four optimization that Y as

shown in Section 6 Y make TSAT++ the current fastest decision procedure for

SL on a wide range of benchmark problems.

Figure 2. Basic SAT-based decision procedure based on DLL.

244 ALESSANDRO ARMANDO ET AL.



4.1. ISn PREPROCESSING

To reduce the enumeration of unfruitful valuations at a reasonable price,

Armando et al., 1999 introduced the so-called ISn preprocessing. The name

stands for inconsistent subsets and the subscript number represents the size of the

subsets sought for. Naively put, if P is the set of constraint literals occurring

positively in the input formula, ISn checks the satisfiability of all the valuations

P0 subset of P such that jP 0j e n: for each unsatisfiable subset P0, the clause _l2P0 l
is added to the imput formula before calling TSAT.

Although ISn can be exponential in general, for each fixed n polynomially

many subsets of cardinality n exists, and if satisfiability checking is done in

polynomial time, the resulting procedure runs in polynomial time.

For a given value of n, it also makes sense to generalize the idea in order to

check the satisfiability of set P, with jPj e n, of literals whose atom occurs in the

input formula. To ease the presentation, we restrict to the case in which n = 2.

The generalization of IS2 works as follows: for each unordered pair {ci, cj} of

distinct SL-constraints appearing in � and involving the same variables, all

possible pairs of literals built out of them are checked for satisfiability.

The resulting optimized version of TSAT is given in Figure 3.

THEOREM 7 (Soundness and completeness of TSAT_IS2). Let � be a formula.
Then TSAT_IS2 (�) returns TRUE if � satisfiable, and FALSE otherwise.

Proof. By Theorem 5, since �0 is logically valid and therefore � and �0 $ �
are logically equivalent. Ì

EXAMPLE 8. Consider Example 1 once more. After the preprocessing step of

TSAT_IS2(�Elf), the clauses

: VPred ¼ IRRð Þ _ VPred < IRR þ 1

and

: VenI0 ¼ VenIð Þ _ : VenI0 þ 2 ¼ VenIð Þ
are added to �Elf. These added clauses allow for more pruning while descending

the search tree.

Figure 3. IS2 preprocessing.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 245



Consider Example 6. In TSAT_IS2(�Elf), choosing p1 forces VPred = IRR by

unit propagation; but now, thanks to the clause added by IS2, this also forces

VPred < IRR + 1, which in turn forces p2. TSAT (�Elf, B) on the other hand, had

to branch on p2.

IS2 is a simple way of guiding the generation phase by taking into account the

structure of the constraints in the input formula. IS2 has been proved to speed

the search, especially on randomly generated problems such as the binary

disjunctive temporal problems (DPTs), which are made of binary clauses con-

taining constraints only (see Section 6.1). In that case, the effectiveness of the

technique is dramatic, since adding more binary clauses, which is what IS2 does,
paves the way to detect and propagate more unit clauses once a literal has been

selected by ChooseLiteral.

4.2. EARLY PRUNING

An alternative approach that aims at limiting the generation of unsatisfiable

valuations is based on the idea of checking the valuations while they are gen-

erated by TSAT. This technique is called early pruning (EP) and relies on the

fact that no unsatisfiable valuation can be extended into a satisfiable one by

adding more constraints. EP can be readily incorporated in TAST, as shown in

Figure 4.

THEOREM 9 (Soundness and completeness of TSAT_EP). Let � be a formula.
TSAT_EP (�, B) returns true if � is satisfiable, and FALSE otherwise.

Proof. By Theorem 5 we know that TSAT is sound and complete. Now,

first notice that TSAT_EP differs from TSAT only in that one more recursion

base case, possibly returning FALSE, has been introduced at line 4. This fact

ensures soundness of the function: if TSAT finds no model of �, neither will
TSAT_EP.

As far as completeness is concerned, assume by contradiction that a satisfiable

valuation m is found by TSAT, which is not found by TSAT_EP. By the above

consideration, this means that a subset of m, call it m0, must have been reached by

Figure 4. TSAT with early pruning.

246 ALESSANDRO ARMANDO ET AL.



TSAT_EP and rejected. This means that m0 is unsatisfiable and m, a superset of it,
is satisfiable, which is contradictory. Ì

EXAMPLE 10. Consider Example 1, TSAT_EP as in the figure, and assume

ChooseLiteral returns the first literal that appears in the formula. Then, TSAT_EP

(�Elf, B) picks and add to m, in turn, p1, VPred =IRR and Kp2. The last choice

force K(VPred < IRR + 1) into m by unit propagation, but clearly the valuation is

now unsatisfiable. Therefore backtracking happens, and both K(VPred < IRR + 1)

and Kp2 are removed from m. ChooseLiteral then switches to p2, and the algo-

rithm goes on as in Example 6.

Notice that in this case TSAT, with the same ChooseLiteral, would have ex-

plored a totally useless portion of the search space, namely, checking all models

prefixed with the unsatisfiable m detected above by EP.

4.3. MODEL REDUCTION

A further optimization, called model reduction, is based on the observation that

a valuation m generated by TSAT can be redundant; that is, there might exist a

valuation m0 Î m that propositional entails the input formula. When this is the

case, we can check the satisfiability of m0 instead m. This has the following

advantages:

1. if m and m0 are either both satisfiable or both unsatisfiable, then the value

returned by SatCheck is the same. However, checking the satisfiability of m0

can be easier if we use, for example, BF.

2. if m is unsatisfiable, it may nevertheless be the case that m0 is satisfiable: in
this case SatCheck(m0) returns TRUE, thereby pruning any further search.

Model reduction can be easily incorporated in TSAT as shown in Figure 5.

The main difference with respect to TSAT is that the reduced valuation m0, rather
than m, is checked for satisfiability. It is assumed that ReduceModel(m) returns a
valuation m0� m propositionally entailing the initial input formula.

THEOREM 11 (Soudness and completeness of TSAT_MR). Let � be a formula.
TSAT_MR (�, B) returns TRUE if � is satisfiable, and FALSE otherwise.

Proof. It suffices to note that, since m0 � m, there are three possible cases:

both m0 and m are satisfiable; both are unsatisfiable; or m0 is satisfiable, but m is

not. In the first two cases, SatCheck(ReduceModel(m)) coincides with

SatCheck(m); in the third case, a satisfiable valuation propositionally entailing

the input formula has been found, and the algorithm terminates. Ì

Here again it is important to check that, on average, the time spent in

reducing the valuation does not overwhelm the advantage gained by reduc-

THE SAT-BASED APPROACH TO SEPARATION LOGIC 247



ing it. So far, we have been experimenting with two techniques for reduc-

ing valuations:

Triggering: if m contains a literal l that does not belong to any clause in the

input formula �, then m propositionally entails � if and only if m\{l} does;

therefore l can be safely removed from m. This technique, introduced in

Wolfman and Weld (1999), is called triggering. Triggering has a linear cost in

jmj if realized, for example, via a simple table of the occurrences of literals in �.
Minimization: a better idea is to remove as many redundant constraint literal

l as possible. This can be done by recursively eliminating from m one constraint

literal l at a time such that for each clause C containing l, there exists another

literal l0 in m ? C. Minimization can be done in linear time in the size of the

input formula � provided that a data structure associating to each literal l the
clauses of � whom l belongs to is available.

EXAMPLE 12. Consider again �Elf; in this case, a possible valuation found by

TSAT_MR is m = {p1, VPred = IRR, p2, VPred < IRR + 1, VenI0 = VenI, p4, p3, p5,
VenI0 + 2 = VenI}. A reduced version of it, according to minimization, is m0=
{p1, VPred = IRR, p2 VPred < IRR + 1, p3, p4, p5, VenI

0 + 2 = VenI}, obtained from
m by removing the constraint literal VenI0 = VenI. Further, while m is

unsatisfiable, m0 is not.

Given a valuation m it is important to notice that model reduction that is,

ReducedModel(m) in Figure 5, does not consider the set IS of clauses possibly

added by ISn to the input formula �: these clauses are valid and thus do not need

to be taken into account. Considering them would slow ReduceModel(m) and,
even worse, may partly shadow its effects. In fact if m0 and m00 are the valuations
returned by ReduceModel(m) when considering � and � ? IS respectively, we

have that m0 � m00. Furthermore, ReducedModel(m) is not performed when the

valuation m does not propositionally entail the input formula �, that is, when we

are checking the satisfiability of a valuation because of early pruning. Indeed,

with early pruning we hope to detect the unsatisfiability of m in order to cut the

search. On the other hand, it may be the case that m0 = ReducedModel(m) in

satisfiable while m is not: in this case, considering m0 instead of m would make

vain early pruning.

Figure 5. TSAT with model reduction.

248 ALESSANDRO ARMANDO ET AL.



4.4. BEST REASON DETECTION

So far, we have discussed how to extend an SAT solver in order to obtain a de-

cider for SL, focusing in particular on SAT solvers based on DLL. Our motivation

for this has been that most of the state-of-the-art complete SAT solvers are based

on DLL. However, such solvers extend the basic DLL procedure in different ways

in order to be more effective on different classes of problems. Broadly speaking,

we can divide such solvers in two categories, following the distinction that is

usually made in the SAT competition (Le Berre and Simon, 2003):

Y those designed for real-world problems, e.g., zchaff (Moskewicz et al.,

2001), the winner of the last SAT competition in this category. The fea-

tures of these solvers are that they have a fast-to-compute heuristics, a

simple but efficient pruning mechanism based on unit propagation, and a

sophisticated backtracking mechanism based on back-jumping and learning

(see Moskewicz et al., 2001).
Y those designed for solving difficult either randomly generated or hand-made

problems, for example, kcnfs (Dequen and Dubois, 2004) and March_eq

(Heule and Maaren, 2005) the winners of the last SAT competition in

these categories. These solvers have a complex-to-compute heuristics, so-

phisticated pruning mechanisms significantly extending unit-propagation,

and a simple but efficient back-tracking mechanism without learning.

The modification needed in order to obtain a SAT-based solver for SL can be

done along the lines so far outlined if we start from a solver without back-

jumping and/or learning. Still, in case we want to use a backtracking schema

based on learning, whenever FALSE is returned, a Breason[ for the failure has to be

computed. Intuitively, whenever we are backtracking from a valuation m, a

reason is a subset m0 of m such that any valuation extending m0 will fail. While

backtracking, these reasons m0 are used in order to back-jump over the literals

which are not in m0. Further, if the solver uses learning, the clause _l2�0 l is

(temporarily) added to the input set of clauses in order to avoid future explo-

rations of valuations extending m0.
Thus, in order to use SAT solvers with learning, it is not enough for

SatCheck(m) to return FALSE when m is not satisfiable. Indeed, SatCheck(m) must

also compute a reason for such a failure, that is, an unsatisfiable subset m0 of m.
One such set is obviously m itself. However, in order to try to maximize the

advantages of learning, it is important that m0 be as Bsmall[ as possible with

respect to some ordering relation on valuations. Let m be an unsatisfiable val-

uation. We found it useful to consider the following forms of minimality:

Y Minimal reasons with respect to set inclusion. An unsatisfiable valuation

m0 � m is a minimal reason form with respect to set inclusion if and only if

for all unsatisfiable valuations m00 such that m00 � m0 we have that m00 = m0.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 249



Y Reasons of minimal cardinality. An unsatisfiable valuation m0 � m is a

reason for m of minimal cardinality if and only if for all unsatisfiable

valuation m00 � m, we have that jm0j e jm00j.
Y Shallowest reasons. Let l1,l2, . . . ln (n Q 0) be the literals in m, listed

according to the total order with which they have been assigned. Such a

sequence induces a total order on the subsets of m defined as follows: if m0

and m00 are subsets of m, then m0 � m00 if and only if for all literals li 2 m0 \m00

there exists a literal lj 2 m00 \m0 such that i e j. An unsatisfiable valuation m0

� m is the shallowest reason for m if and only unsatisfiable valuation m00 �
m, we have that m0 � m00.

Intuitively, there is no point in returning a reason that is not minimal under set

inclusion: if we unnecessarily include a literal l in the reason, this may lead to

branch on l, and such a branch is bound to fail. Among the reasons that are

minimal under set inclusion, those with minimal cardinality have the further

advantage that, once added to the input formula because of learning, they prune a

larger portion of the search space. Finally, while backtracking from a valuation

m, and even returning a reason m0 with minimal cardinality, it may still be the

case that the next branch being explored is deemed to fail. In fact, m may still

contain a shallowest reason.

EXAMPLE 13. Consider Example 1 once again and assume that the heuristics

is such that it first sets p1 (forcing also VPred = IRR by unit propagation), then

Kp2 (forcing K(VPred < IRR + l)), and then VenI0 = VenI, p3 and p5 (this last one
forcing also VenI0 + 2 = Venl). The corresponding valuation {p1, VPred = IRR,
Kp2, K(VPred < IRR + 1), VenI0 = VenI, p3, p5, VenI

0 + 2 = VenI} propositionally

entails �Elf but is unsatisfiable. The standard procedure detects that m is un-

satisfiable, but it backtracks only up to the choice of p5, which is not involved in

the unsatisfiability of m; then a whole search branch is explored, which is totally

useless, since the assignment still contains both VPred = IRR and K(VPred < IRR +

l), which are responsible of the contradiction. The same, even worse, goes for the

choice of p3.
On the other hand, if reason detection is enabled, upon detection of the

unsatisfiability of m, a reason is found, backtracking starts up to a point

where the contradiction corresponding to the reason is solved. In our exam-

ple, there are two minimal reasons, namely, x = {VPred = IRR, K(Vpred <
IRR + 1)} and x0 = {VenI0 = VenI, VenI0+ 2 = Venl}. Both x and x0 are mini-

mal under set inclusion and of minimal cardinality. However, x is the shal-

lowest. Indeed, if the reason is set to x, backtracking will stop at the choice

point where Kp2 was chosen. Also notice that, assuming the reason being

returned is x0, backtracking will stop at the choice VenI0 = VenI: however,

the following search is bound to fail given that the valuation will still contain

x.

250 ALESSANDRO ARMANDO ET AL.



The above example and discussion seems to point out that a reason of minimal

size is better than a reason minimal under set inclusion, and that the shallowest

reason is better than a reason of minimal size. Indeed, the shallowest reason tries

to remove as soon as possible the unsatisfiability from the valuation built so

far. However, despite the Bsmartness[ of the reason being returned, there is

no guarantee whatsoever that the tree being explored with a Bsmart[ reason

mechanism will be smaller than the tree explored with another reason mech-

anism. As Prosser (1993) pointed out, it may be the case that the a priori known
fruitless exploration of a branch will lead to a failure and the discovery of a reason

causing a long jump to the top of the search stack. To this end, a simple

implementation of SatCheck(m) returning, m as reason whenever, m is not sat-

isfiable, can turn out to be more effective than other implementations, at least in

some cases. However, trivially, a solver with back-jumping and/or learning can

never explore more nodes than a solver with backtracking, assuming, for ex-

ample, a static branching heuristics.

The first SAT-based solver for SL using a backtracking schema with learning

has been proposed in Audemard et al. (2002). However, in that paper, there is no

indication about how the reason is computed when SatCheck(m) fails.

5. Satisfiability Checking

It is a well-known fact that BF can be used to check the satisfiability of a finite

set Q of constraints of the form x j y e c; see, for example, Cormen et al. (2001).

This is done by first building a constraint graph for Q, that is, a weighted di-

rected graph whose nodes are the variables occurring in Q and having an edge
from y to x of weight c for each constraint x j y e c in Q. An extra node, the

source, is also included and is linked to all the other nodes with edges of weight

0. BF is then used to solve the Bsingle source shortest-paths[ problem. The set of

constraints Q is satisfiable if and only if the constraint graph for Q contains no

negative cycles, that is, cycles with cumulative negative weight.

Here we show that satisfiability checking of a generic valuation m can be done

efficiently with BF. As a preliminary step, we turn m into an equisatisfiable set

me,< whose literals are of the form x j y e c or x j y < c. This can be done by

deleting all the literals of the form p and Kp where p is a propositional letter and

by replacing constraint literals

Y y j x Q j c, K(y j x < jc), K(x j y > c) with the logically equivalent

constraint x j y e c, and
Y y j x > j c, K(y j x e j c), K(x j y Q c) with the logically equivalent

constraint x j y < c.

A further step is needed to transform the valuation me,< into an equisatisfiable

set of constraints of the form x j y e c whose satisfiability can be checked with

THE SAT-BASED APPROACH TO SEPARATION LOGIC 251



BF. If the domain of interpretation is Z, this can be done by replacing in me,<

every constraint of the form x j y < c with x j y e c0, where c0 is the maximum

integer strictly smaller than c. It is easy to see that the resulting set of constraint

is satisfiable if and only if me,< is. If the domain of interpretation is R, then we

rely on the following result.

LEMMA 14. Let Q and Q0 be two finite sets of constraints of the form x j y e c
and x j y < c, respectively. Let n be the number of variables in Q0. Let p be the
maximum number of digits appearing to the right of the decimal point in any
numeric constant in Q ? Q0. If C is x j y < c, let Ce be x� y 	 c� 1

10 p nþ1ð Þ.
Finally, let Qe

0 = {Ce : C 2 Q0}.
Q ? Q0 is satisfiable in R if and only ij Q ? Qe

0
is satisfiable in R.

Proof. The right-to-left direction is trivial, and therefore here we focus on the

left to right direction. In the following, if Q00 � Q ? Q0 is a set of constraints, by
Qe
00 we mean the set obtained from Q00 by replacing each constraint C of the form

x j y < c with Ce. Further, e is 1
10 p nþ1ð Þ.

We proceed by contradiction and assume that Q ? Q0 is satisfiable while Q
? Qe

0 is not. In this case, there exists a subset Q00 of Q ? Q0 such that

Y Q00 is satisfiable and Qe
00 is not,

Y Qe
00 has the form{x1 j x2 e c1 j e1, x2 j x3 e c2 j e2, . . . , xm j xi e cm j

em}, where each ei is either 0 or e, and
Y in Qe

00 there are at least one and at most n constraints for which ei = e, that
is, 1 ejQ007Q0je n.

Q00 is satisfiable and Qe
00 unsatisfiable imply

Pm
i¼1 ci > 0 and

Pm
i¼1 ci � eið Þ < 0

respectively (notice that it cannot be the case that
Pm

i¼1 ci ¼ 0 because Q
0 0
7 Q0 m

; and Q00 has to be satisfiable by hypothesis). Since
Pm

i¼1 ci > 0, then
Pm

i¼1
ci � 1

10 p. But then we have a contradiction, becausePm
i¼1 ci � eið Þ ¼Pm
i¼1 ci �

Pm
i¼1 ei �Pm

i¼1 ci � ne ¼Pm
i¼1 ci � 1

10p
n

nþ1 �
1
10p
� 1

10p
n

nþ1 > 0
Ì

Notice that the application of the above result requires, if the domain of

interpretation is R, to determine the values of n and p, which in turn depend on m.
The next result shows that the values for n and p can be computed beforehand

and once and for all, on the basis of the input formula �.

THEOREM 15. Let � be a formula with n variables. Let p be the maximum
number of digits appearing to the right of the decimal point in any numeric
constant in �. Let m be a valuation whose atoms occur in �. The valuation m is

252 ALESSANDRO ARMANDO ET AL.



satisfiable in R if and only ij the valuation obtained from me,< by replacing each
constraint x� y 	 c� 1

10p nþ1ð Þ is satisfiable in R.
Proof. Clearly, m is satisfiable in R if and only if me,< is satisfiable in R. The

thesis trivially follows from Lemma 14 once we observe that, given that the

atoms in m occur in �,

Y the number of variables in me,< is less than or equal to n and
Y the maximum number of digits appearing to the right of the decimal point

in any of the numeric constants in me,< is less than or equal to the max-

imum number of digits appearing to the right of the decimal point in any of

the numeric constants in �. Ì

The above results allow us to use BF in order to check the satisfiability of

any valuation. Given a valuation m with n variables, BF runs in time O(n �
jmj), and is the current best known method for this task (see Cormen et al., 2001).

Further BF has the following advantages, in the case the valuation m is

unsatisfiable:

Y each negative cycle in the constraint graph G corresponds to a minimal

(with respect to set inclusion) unsatisfiable subset of m, and
Y assuming there is more than one negative cycle in G and that R is the

corresponding set of reasons, it is easy to modify BF so to make it return a

reason that is of minimal cardinality or the shallowest among those in R
without modifying its overall complexity O(n � jmj).

6. Implementation and Experimental Analysis

We have implemented the techniques described in Sections 3Y5 in a system

called TSAT++. The system is based on a C++ implementation of an iterative

version of the algorithm of Figure 2 featuring all optimizations presented in

Section 4.

TSAT++ uses two distinct modules for the enumeration of valuations, m
propositionally entailing the input formula � and for checking the satisfiability of

m. A detailed analysis of the architecture of TSAT++ is beyond the scope of this

paper; the interested reader may refer to Armando et al. (2004).

In the current version, enumeration is done by a modified version of SIMO

(Giunchiglia et al., 2003). SIMO features a number of SAT optimization tech-

niques inspired by Chaff, among which are l-UIP learning, VSIDS heuristics, and

two-literal watching (Moskewicz et al., 2001).

In order to assess the effectiveness of the optimizations described in Section 4,

we have carried out a thorough experimental analysis using TSAT++ and

TSAT++ plain, on a wide variety of publicly available random, hand-made, and

THE SAT-BASED APPROACH TO SEPARATION LOGIC 253



real-world SL-formulas.j TSAT++ plain is the same as TSAT++ except that IS2,
early pruning, and model reduction are disabled while best reason detection is set

so to return a reason minimal with respect to set inclusion. Further, in order to

evaluate the effectiveness of our system, we have compared TSAT++ with a

number of rival, publicly available, and state-of-the-art systems specifically

designed for (a significant fragment of) SL or with a specialized satisfiability

procedure for SL valuations.jj We have thus considered the system presented

in Stergiou and Koubarakis (1998), which we will call SK; Tsat (Armando et al.,

1999), the predecessor of TSAT++; CSPi (Oddi and Cesta, 2000); and Epilitis

(Tsamardinos and Pollack, 2003). All these systems are restricted to DTPs (see

Section 6.1). Moreover, we have considered SEP (Strichman et al., 2002) and

MathSAT (Audemard et al., 2002). TSAT++ is as expressive as SEP and not

comparable to MathSAT: while MathSAT allows for arbitrary linear constraints

as atoms, it does not allow to consider the integers as domain of interpretation.

After a first run, we have discarded SK, because it is clearly noncompetitive with

respect to the others.

Each solver has been run on all the benchmarks it can deal with, not only on

the benchmarks the solver was analyzed on by the authors. In particular, Epilitis

can handle only DTPs with integer-valued variables; CSPi and TSAT can handle

only DTPs with real-valued variables; Math-SAT can handle arbitrary SL-

formulas with real-valued variables; SEP and TSAT++ can handle arbitrary SL-

formulas with real- or integer-valued variables. Each solver has been run by

using the settings or the version of the solver suggested by the authors for the

specific class of problems. All the experiments have been run on a Linux box

equipped with a Pentium IV 2.4 GHz processor and 1 GB of RAM. CPU time is

measured in seconds; timeout has been set to 1,000 s.

6.1. DISJUNCTIVE TEMPORAL PROBLEMS

We start our analysis considering randomly generated DTPs as introduced in

Stergiou and Koubarakis (1998) and since then used as a benchmark in

(Armando et al., 1999; Oddi and Cesta, 2000: Audemard et al., 2002;

Tsamardinos and Pollack, 2003). DTPs are randomly generated by fixing the

number k of disjuncts per clause, the number n of arithmetic variables, and a

j The classification of the benchmarks in Btandem,[ Bhandmade,[ and Breal-world[
problems is borrowed from the SAT competition (Le Berre and Simon, 2003).
jj Notice that there exist other systems capable of handling SL, e.g., ICS (de Moura et al.,
2004), CVC (Stump et al., 2002), CVC-Lite (Barrett and Berezin, 2004), Verifun (Flanagan

et al., 2003). We did not include these solvers in our analysis since they are not tailored for SL.
MathSAT has been included since it has a specialized satisfiability checker for SL based on
BF.

254 ALESSANDRO ARMANDO ET AL.



positive integer L such that all the constants are taken in [jL, L]. Then, (1) the
number of clauses m is increased in order to range from satisfiable to un-

satisfiable instances, (2) for each tuple of values of the parameters, 100 instances

are generated and then fed to the solvers, and (3) the median of the CPU time is

plotted against the m/n ratio. The results for k = 2, L = 100, and n = 35 are given

in Figure 6: plots (a) and (b) show the performance when the variables are real-

and integer-valued respectively.

When m/n Q 6, TSAT++ clearly outperforms the other systems, including

TSAT++plain: in the peak region, the solver that is closer to TSAT++ in this

domain, namely Epilitis, is a factor of 6 slower on 35 variables (Plot (b)). This is

a very positive result, taking into account that Epilitis works only on DTP with

k = 2, and it has been thoroughly tested and optimized on this type of problems

(see Tsamardinos and Pollack (2003)). All the other systems are about two orders

of magnitude slower than TSAT++ in the peak region. Even more important is

the fact that the gap in performance between TSAT++ and the other systems

increases with the number of variables (we have experimented with problems up

to 50 variables). For this class of problems TSAT++ has been run with early

pruning and preprocessing enabled, with the best reason detection optimization

set to return shortest reason, and with model reduction disabled. The role of the

optimizations is fundamental for the performance on this test set: TSAT++ is

more than one order of magnitude faster than TSAT++plain in the peak region.

6.2. REAL-WORLD PROBLEMS

We have also carried out experiments on

1. the 40 post-office benchmarks introduced in Audemard et al. (2002), coming

in four series (consisting of 7, 9, 11, and 13 instances, respectively) of

increasing difficult. In these problems the domain of the interpretation is the

set of real numbers.

2. the 16 hardware verification problems from Strichman et al. (2002), nine

(resp. 7) of which are with real- (resp. integer-) valued variables.

The post-office benchmarks are bounded model checking problems for timed

automata; the hardware verification suite includes scheduling, cache coherence

protocol, load-store unit, and out-of-order execution problems. Considering the

results of MathSAT, SEP, and TSAT++ on the post-office problems, our first

observation is that SEP is not competitive on these problems: on 13 of the

hardest instances, SEP had a segmentation fault in 11 cases, and on the other two

hardest instances SEP is outperformed by different orders of magnitude by

TSAT++ and MathSAT. Our second observation is that TSAT++ (with IS2 pre-
better than MathSAT up to a factor of 6 on each single instance: this is

particularly remarkable given that the authors have customized a version of

THE SAT-BASED APPROACH TO SEPARATION LOGIC 255



MathSAT explicitly for this kind of problems.j Considering the hardware

verification problems, all of them are easy to solve (i.e., in less than 3 s each) for

all the three solvers, except for SEP that timeouts on one instance. Of the nine

(resp. 16) runs of MathSAT (resp. SEP and TSAT++), only three take more than

0.1 s. These observations are confirmed by Figure 7, which gives the overall

picture of the results for MathSAT, SEP, and TSAT++ on the 49 instances with

real valued variables: the x-axis is the number of instances solved by each solver

within the CPU time specified on the y-axis. The plot also shows that TSAT++

plain can be faster than TSAT++ on the easy instances, that is, those requiring

less than 1 s to be solved. For such problems, the overhead of the optimizations

(and in particular of the preprocessing) outweighs the benefits.

6.3. HAND-MADE PROBLEMS

Finally, we have considered the Bhand-made[ diamond problems from Strichman

et al. (2002). A diamond problem is a formula � that depends on a parameter K >

0 and such that there exists a number of unsatisfiable valuations propositionally

entailing � that is exponential in K. Moreover, hard instances having a single

satisfiable valuation propositionally entailing them can be generated. A second

parameter T is also used and it affects the number of variables and the size of the

problem. Variables range over the reals.

Figure 6. Performance on (a) randomly generated DTPs with 35 real valued variables and on (b)

randomly generated DTPs with 35 integer-valued variables. The dotted plot indicates satisfiability
percentage both in (a) and in (b).

j As indicated by the authors, we have used this customized version of MathSAT on this

class of problems.

256 ALESSANDRO ARMANDO ET AL.



Table I shows comparative results on the diamond problems for various

settings of K and T. In particular, we considered all the settings corresponding to

nontrivially solvable instances reported in (Strichman et al., 2002). The third

column denotes whether the problem has a unique valuation propositionally en-

tailing it; the remaining columns show CPU times for TSAT++, TSAT++ plain,

MathSAT, and SEP. For this class of problems TSAT++ has been run with

best-reason detection set to shortest reason, and with model reduction. The

experimental results clearly show that TSAT++ performs best, often by orders

of magnitude. Instances with a unique solution are more difficult than

nonunique ones, as expected, except for SEP.j

For this test set, it is of fundamental importance the model reduction opti-

mization: without it, TSAT++ performance is significantly worse, up to the point

that problems that are solved in 1 s by TSAT++ are not solved without model

reduction within the time limit.

7. Related Work

Several systems tailored for SL, employing different approaches and techniques,

have been built and tested over the years. We now give an overview of them,

highlighting the pros and cons of each one and chronologically reviewing the

techniques introduced by each one. SK (Stergiou and Koubarakis, 1998); Stergiou

Figure 7. Performance on real-problems.

j Following a suggestion by Offer Strichman, we have also tried SEP with an option that

disables the use of a specialized data structure called Bconjunction matrix^ (Strichman et al.,
2002). This can have a dramatic impact on SEP: some problems that are solved with
conjunction matrix within the time limit are not solved without, and vice versa.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 257



and Koubarakis, 2000). The procedure SK has been the first dealing with a

significant fragment of SL. Its main features are the combined usage of forward-
checking, back-jumping, and the minimum remaining value heuristic (MRV).

Forward-checking works by checking whether the valuation built so far entails

either a literal or its negation, form each literal not yet in the valuation. This

actually reduces the search space, at the price of performing a potentially large

number of useless satisfiability. SK is also able to detect conflict sets and to

improve on backtracking via a technique similar to back-jumping. MRV is used

to choose literals that appear in disjunctions with the smallest number of

unassigned disjuncts: if there is a unit clause, the literal in it will be selected by

MRV and then propagated, thus mimicking unit propagation.

The main difference between SK and SAT-based procedures lies in the way

valuations propositionally entailing the input formula are searched. In fact,

SK is based on syntatic branching: given a disjunction l ¦ l0, first l is added

to the current valuation, and, upon failure, l0 is considered. As explained be-

low, this type of search may lead to the exploration of search space already

explored.

Tsat (Armando et al., 1999). Tsat was the first application of the SAT-based

approach to SL. The system employs a branching schema now known as

semantic branching. Unlike syntactic branching, semantic branching selects

a not yet assigned literal l, and considers in turn the case in which l is true

and the case in which l is false. Notice that in the second case, the conjunction

of l with (l ¦ l0) forces the assignment of l0 by unit propagation: as already

observed in D’Agostino (1992), syntactic branching may lead to redundant

exploration of parts of the search space, which semantic branching avoids. The

following example, adapted from Armando et al. (1999), clearly illustrates this

issue.

Table I. Diamond problems: BTIME^ indicates that the solver does not solve the instance within

the time limit.

K T Unique TSAT++ TSAT++ plain MathSAT SEP

50 4 NO 0.00 0.02 0.05 0.12

50 4 YES 0.01 0.14 TIME 0.07

100 5 NO 0.01 0.11 0.61 1.18

100 5 YES 0.04 7.57 TIME 0.17

250 5 NO 0.08 0.76 5.40 52.20

250 5 YES 0.21 194.99 TIME 0.77

500 5 NO 0.29 4.46 21.22 742.99

500 5 YES 1.05 TIME TIME 4.85

1000 5 NO 1.07 22.3 Y TIME

1000 5 YES 6.45 TIME Y 22.53

2000 5 NO 3.76 94.23 Y Y
2000 5 YES 29.90 TIME Y Y

258 ALESSANDRO ARMANDO ET AL.



EXAMPLE 16. Let � be a formula including the following clauses:

x1 � x2 	 3 _ x7 � x8 	 20

x1 � x3 	 4 _ x4 � x3 	 �2
x2 � x4 	 2 _ x3 � x2 	 1

..

.

Let �(i, j) denote the jth disjunct of the ith disjunction displayed in �; for
example, �(1, 2) is x7j x8 e 20. Assume that the dots stand for further (possibly

many) unspecified clauses such that no satisfiable extension of the valuation

{�(1, 1), �(2, 1)} exists.

Consider the behavior of syntactic versus semantic branching when {�(1, 1),
�(2, 1)} is the valuation built so far. Since no satisfiable extension of it exists,

after some search, failure is necessarily detected; both procedures backtrack and

remove �(2, 1) from the current valuation.

Now syntactic branching goes on with the valuation {�(1, 1), �(2, 2)},

whereas semantic branching proceeds with {�(1, 1), K�(2, 1)}, which leads

immediately, via unit propagation, to {�(1, 1), K�(2, 1), �(2, 2)}.
Working with the latter valuation rather than with the former may lead to

considerable savings: assume that both procedures extend the valuation with �(3,
1); since {�(1, 1), K�(2, 1), �(2, 2) �(3, 1)} is unsatisfiable, semantic branching

immediately backtracks and considers �(3, 2), whereas syntactic branching may

waste a big amount of resources in the vain attempt of finding a satisfiable

extension of {�(1, 1), �(2, 2), �(3, 1)}.

Semantic branching was shown in Armando et al. (1999) to dramatically

improve the performance with respect to SK, up to one order of magnitude on

randomly generated binary DTPs.

In Tsat, also IS2 was introduced, gaining to the system another order of

magnitude in performanceVthis despite the fact that, to enumerate valuations,

Tsat adapted a rather simple SAT solver, due to Böhm (Böhm and Speckenmeyer

1996), which did not employ any modern optimization such as back-jumping and

learning. Satisfiability checking used lp_solve v2.2 (Berkelaar, 1997), which

provided a free implementation of the Simplex method.

CSPi (Oddi and Cesta, 2000). CSPi features an essentially CSP-based solution

schema, implementing an efficient incremental procedure for forward-checking.

Semantic branching is used, showing results that are better than Tsat on small

instances, and comparable on bigger ones. Notice that performance, up to (Oddi

and Cesta, 2000), was measured in terms of how many calls to the satisfiability

check function were done, rather than CPU time.

MathSAT (Audemard et al., 2002). MathSAT uses SIM (Giunchiglia et al.

2001) as enumerator and a hierarchical satisfiability checker employing Y in this

order Y equality reasoning, BF for SL-constraints, the Simplex method for full

THE SAT-BASED APPROACH TO SEPARATION LOGIC 259



linear arithmetic, and inequalities reasoning. The simplest solver is chosen on-

the-fly, thereby obtaining both expressivity and efficiency at the same time.

MathSAT also introduces a number of optimizations, among which are prepro-

cessing based upon syntactic equivalence, enhanced early pruning, that is, early

pruning conditioned upon a heuristic function, and back-jumping/learning based

upon reason detection. Also, a form of model reduction is used, based upon

triggering. On randomly generated binary DTPs, MathSAT improves the per-

formance over Tsat in terms of CPU time. However, the gap between the two

solvers decreases as the number of variables increases.

Epilitis (Tsamardinos and Pollack, 2003). Epilitis is, so far, the last CSP-

based system. Epilitis is restricted to binary DTPs. It uses semantic branching,

incremental forward checking, a MRV heuristics, and size-bounded learning of

size n (Bayardo and Miranker, 1996). This means that conflict clauses are re-

trieved and stored only if they contain less than n literals (in practice, n = 10 is

used). Once stored, a clause is never forgotten. On randomly generated binary

DTPs, Epilitis shows significantly better performance than Tsat in terms of CPU

time, of up to one order of magnitude.

SEP (Strichman et al., 2002). SEP is a back-end to the UCLID verification

tool (Lahiri et al., 2002), employing the so-called eager variant of the SAT-based

approach. Given a formula �, rather than enumerating valuations and checking

them for satisfiability, SEP builds a propositional formula �0 whose satisfying

valuations are ensured to correspond to satisfiable valuations of �. The current

version of SEP uses Chaff to find valuations satisfying �0. To the best of our

knowledge, SEP is so far the only solver using the eager SAT-based approach to

SL. SEP suffers from the fact that the size of �0 can be exponential in the size of

�. On the other hand, as reported in Strichman et al. (2002), if SEP can get past

the encoding phase, the problem is easy to solve for Chaff.

8. Conclusions

In this paper we have focused on the problem of building efficient SAT-based

decision procedures for SL. We have presented the basic procedure from

Armando et al. (1999) along with some key optimizations. We have also shown

how it is possible to check the satisfiability of valuations involving constraints of

the form x j y < c using BF. An extensive comparative experimental analysis

shows that our solver TSAT++, built along the lines described in this paper, is

currently the state of the art on various classes of problems, including randomly

generated, hand-made, and real-world instances. We believe that the techniques

described in this paper can be fruitfully extended to other (more expressive)

logics than SL.

The benchmark problems used for the experiments presented in this paper and

the executable of TSAT++ are publicly available at the URL http://www.ai.dist.

unige.it/Tsat.

260 ALESSANDRO ARMANDO ET AL.



Acknowledgements

We acknowledge Massimo Idini’s work on the satisfiability checking module.

Mauro Di Manzo is thanked for the many fruitful discussions on the subject of

this paper. Moreover, the authors of the solvers we have compared have helped

us a lot: Gilles Audemard, Angelo Oddi, Ofer Strichman, Ioannis Tsamardinos.

Sergey Berezin and Leonardo De Moura are thanked for discussions related to

the topic of this paper. Sanjit Seshia and the UCLID group provided us with a lot

of interesting problems. We are partially supported by MIUR.

References

Armando, A. and Giunchiglia, E. (1993) Embedding complex decision procedures inside an

interactive theorem prover, Ann. Math. Artif. Intell. 8(3Y4), 475Y502.
Armando, A., Castellini, C. and Giunchiglia, E. (1999) SAT-based procedures for temporal

reasoning, in S. Biundo and M. Fox (eds.), Proceedings of the 5th European Conferevace on
Planning (Durham, UK), Vol. 1809 of Lecture Notes in Computer Science, Springer,

pp. 97Y108.
Armando, A., Castellini, C., Giunchiglia, E., Idini, M. and Maratea, M. (2004) TSAT++: an open

platform for satisfiability modulo theories, in Proceedings of PDPAR, Pragmatics of Decision
Procedures in Automated Reasoning, Cork (Ireland), Vol. 125, Issue 3 of ENTCS, Elsevier,
pp. 25Y36.

Armando, A., Castellini, C., Giunchiglia, E. and Maratea, M. (2005a) A SAT-based decision

procedure for the boolean combination of difference constraints, in Proceedings of SAT,
International Conference on Theory and Applications of Satisfiability Testing, Vancouver
(Canada), Vol. 3542 of LNCS, Springer, pp. 16Y29.

Armando, A., Castellini, C., Giunchiglia, E., Giunchiglia, F. and Tacchella, A. (2005b) SAT-based

decision procedures for automated reasoning: a unifying perspective, in Mechanizing
Mathematical Reasoning: Essays in Honor of Jrg H. Siekmann on the Occasion of His 60th
Birthday, Vol. 2605 of Lecture Notes in Computer Science, Springer.

Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A. and Sebastiani, R. (2002) A SAT based

approach for solving formulas over Boolean and linear mathematical propositions, in A.

Voronkov (ed.), Automated Deduction Y CADE-18, Vol. 2392 of Lecture Notes in Computer
Science, Springer, pp. 195Y210.

Barrett, C. W. and Berezin, S. (2004) CVC Lite: a new implementation of the cooperating validity

checker category B, in 16th International Conference on Computer Aided Verification (CAV’04),
Vol. 3114, Springer, pp. 515Y518.

Bayardo, Jr., R. J. and Miranker, D. P. (1996) A complexity analysis of space-bounded learning

algorithms for the constraint satisfaction problem, in Proceedings of the Thirteenth National
Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial
Intelligence Conference, Menlo Park, AAAI/MIT, pp. 298Y304.

Berkelaar, M. (1997) The lp_solve Solver for Mixed Integer-Linear Programming. Version 2.2.

Available at http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml.

Böhm, M. and Speckenmeyer, E. (1996) A fast parallel SAT-solver Y efficient workload balancing,

Ann. Math. Artif. Intell. 17, 381Y400.
Bryant, R. E., Lahiri, S. K. and Seshia, S. A. (2002) Deciding CLU logic formulas via Boolean and

pseudo-Boolean encodings, in Proceedings of International Workshop on Constraints in Formal
Verification. Associated with International Conference on Principles and Practice of Constraint

Programming, Ithaca, New York (USA).

THE SAT-BASED APPROACH TO SEPARATION LOGIC 261



Castellini, C., Giunchiglia, E. and Tacchella, A. (2003) SAT-based planning in complex domains:

concurrency, constraints and nondeterminism, Artif. Intell. 147, 85Y117.
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001) Introduction to Algorithms,
MIT.

Cotton, S., Asarin, E., Maler, O. and Niebert, P. (2004) Some progress in satisfiability checking for

difference logic, in Joint International Conferences on Formal Modelling and Analysis of Timed
Systems (FORMATS) and Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT), Vol. 3253 of Lecture Notes in Computer Science, Springer, pp. 263Y276.

D’Agostino, M. (1992) Are tableaux an improvement on truth-tables? J. Logic, Lang. Inf. 1,
235Y252.

Davis, M., Logemann, G. and Loveland, D. (1962) A machine program for theorem proving,

Journal of the ACM 5(7).

de Moura, L., Ruess, H., Shankar, N. and Rushby, J. (2004) The ICS decision procedures for

embedded deduction, in Proceedings of IJCAR, International Joint Conference on Automated
Reasoning, Cork, Ireland.

Dechter, R., Meiri, I. and Pearl, J. (1989) Temporal constraint networks, in H. J. L. R. J. Brachman

and R. Reiter (eds.), Proceedings of the 1st International Conference on Principles of
Knowledge Representation and Reasoning, Toronto, Canada, Morgan Kaufmann, pp. 83Y93.

Dequen, G. and Dubois, O. (2004) kcnfs: an efficient solver for random K-Sat formulae, in E.

Giunchiglia and A. Taicchella (eds.), 6th International Conference on Theory an Applications of
Satisfiability Testing. Selected Revised Papers, Vol. 2919 of Lecture Notes in Computer Science,
Springer, pp. 486Y501.

Flanagan, C., Joshi, R., Ou, X. and Saxe, J. B. (2003) Theorem proving using lazy proof

explication, in 15th International Conference on Computer Aided Verification (CAV’03), Vol.
2725, Springer, pp. 355Y367.

Gent, I., Maaren, H. V. and Walsh, T. (eds.) (2000) SAT2000. Highlights of Satisfiability Research
in the Year 2000, IOS.

Giunchiglia, F. and Sebastiani, R. (1996) Building decision procedures for modal logics from

propositional decision procedures Y the case study of modal K, in Proc. CADE-96, New

Brunswick, New Jersey, USA, Springer.

Giunchiglia, E., Maratea, M., Tacchella, A. and Zambonin, D. (2001) Evaluating search heuristics

and optimization techniques in propositional satisfiability, in Automated Reasoning, First
International Joint Conference (IJCAR), Vol. 2083 of Lecture Notes an Computer Science,
Springer, pp. 347Y363.

Giunchiglia, E., Giunchiglia, F. and Tacchella, A. (2002) SAT-based decision procedures for

classical modal logics, J. Autom. Reason. 28, 143Y171. Reprinted in (Gent et al., 2000).

Giunchiglia, E., Maratea, M. and Tacchella, A. (2003) (In)Effectiveness of look-ahead techniques

in a modern SAT solver, in Principles and Practice of Constraint Programming (CP), Vol. 2833
of Lecture Notes in Computer Science, Springer, pp. 842Y846.

Heule, M. and Maaren, H. V. (2005) March_eq: implementing additional reasoning into an

efficient look-ahead SAT solver, in 8th International Conference on Theory an Applications of
Satisfiability Testing, Vol. 3542 of LNCS, Springer, pp. 345Y353.

Lahiri, S. K., Seshia, S. A. and Bryant, B. (2002) Modeling and verification of out-of-order

microprocessors in UCLID, Lect. Notes Comput. Sci. 2517, 142Y155.
Le Berre, D. and Simon, L. (2003) The essentials of the SAT’03 competition, in Proceedings of the
6th International Conference on the Theory and Applications of Satisfiability Testing (SAT’03).
Selected revised papers, Vol. 2919 of LNCS.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. (2001) Chaff: engineering

an efficient SAT solver, in Proceedings of the 38th Design Automation Conference (DAC’01).
Oddi, A. and Cesta, A. (2000) Incremental forward checking for the disjunctive temporal problem,

262 ALESSANDRO ARMANDO ET AL.



in Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000), Berlin,
pp. 108Y112.

Plaisted, D. and Greenbaum, S. (1986) A structure-preserving clause form translation, J. Symb.
Comput. 2, 293Y304.

Pratt, V. R. (1977) Two easy theories whose combination is hard, Technical report, Massachusetts

Institute of Technology.

Prosser, P. (1993) Domain filtering can degrade intelligent backjumping search, in Proc. IJCAI, pp.
262Y267.

Siekmann, J. and Wrightson, G. (eds.) (1983) Automation of Reasoning: Classical Papers in
Computational Logic 1967Y1970, Vol. 1Y2, Springer.

Stergiou, K. and Koubarakis, M. (1998) Backtracking algorithms for disjunctions of temporal

constraints, in Proceedings of AAAI/IAAI, Madison, WI (USA), pp. 248Y253.
Stergiou, K. and Koubarakis, M. (2000) Backtracking algorithms for disjunctions of temporal

constraints, Artif. Intell. 120(1), 81Y117.
Strichman, O., Seshia, S. A. and Bryant, R. E. (2002) Deciding separation formulas with SAT,

Lect. Notes Comput. Sci. 2404, 209Y222.
Stump, A., Barrett, C. W. and Dill, D. L. (2002) CVC: a cooperating validity checker, in J. C.

Godskesen (ed.), Proceedings of the International Conference on Computer-Aided Verification.
Tsamardinos, I. and Pollack, M. (2003) Efficient solution techniques for disjunctive temporal

reasoning problems, Artif. Intell. 151, 43Y89.
Tseitin, G. (1970) On the complexity of proofs in propositional logics, Semin. Mat. 8. Reprinted in

(Siekmann and Wrightson, 1983).

Wolfman, S. and Weld, D. (1999) The LPSAT-engine and its application to resource planning, in

Proceedings IJCAI-99.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 263



MATHSAT: Tight Integration of SAT

and Mathematical Decision Proceduresj

MARCO BOZZANO1, ROBERTO BRUTTOMESSO1,

ALESSANDRO CIMATTI1, TOMMI JUNTTILA2,

PETER VAN ROSSUM1, STEPHAN SCHULZ3,

and ROBERTO SEBASTIANI4
1ITC-IRST, via Sommarive 18, 38050, Povo, Trento, Italy.
e-mail: {bozzano, bruttomesso, cimatti, vanrossum}@itc.it
2Helsinki University of Technology, P.O. Box 5400, FIN-02015 TKK, Helsinki, Finland.
e-mail: tommi.junttila@tkk.fi
3Università di Verona, Strada le Grazie 15, 37134, Verona, Italy. e-mail: schulz@eprover.org
4DIT, Università di Trento, via Sommarive 14, 38050, Povo, Trento, Italy.
e-mail: roberto.sebastiani@dit.unitn.it

Abstract. Recent improvements in propositional satisfiability techniques (SAT) made it possible

to tackle successfully some hard real-world problems (e.g., model-checking, circuit testing,

propositional planning) by encoding into SAT. However, a purely Boolean representation is not

expressive enough for many other real-world applications, including the verification of timed and

hybrid systems, of proof obligations in software, and of circuit design at RTL level. These prob-

lems can be naturally modeled as satisfiability in linear arithmetic logic (LAL), that is, the Boolean

combination of propositional variables and linear constraints over numerical variables. In this

paper we present MATHSAT, a new, SAT-based decision procedure for LAL, based on the (known

approach) of integrating a state-of-the-art SAT solver with a dedicated mathematical solver for

LAL. We improve MATHSAT in two different directions. First, the top-level line procedure is

enhanced and now features a tighter integration between the Boolean search and the mathematical

solver. In particular, we allow for theory-driven backjumping and learning, and theory-driven

deduction; we use static learning in order to reduce the number of Boolean models that are math-

ematically inconsistent; we exploit problem clustering in order to partition mathematical reasoning;

and we define a stack-based interface that allows us to implement mathematical reasoning in an

incremental and backtrackable way. Second, the mathematical solver is based on layering; that is,

the consistency of (partial) assignments is checked in theories of increasing strength (equality and

uninterpreted functions, linear arithmetic over the reals, linear arithmetic over the integers). For

each of these layers, a dedicated (sub)solver is used. Cheaper solvers are called first, and detection

of inconsistency makes call of the subsequent solvers superfluous. We provide a through exper-

imental evaluation of our approach, by taking into account a large set of previously proposed

benchmarks. We first investigate the relative benefits and drawbacks of each proposed technique by

j This work has been partly supported by ISAAC, a European-sponsored project, contract no.

AST3-CT-2003-501848; by ORCHID, a project sponsored by Provincia Autonoma di Trento; and

by a grant from Intel Corporation. The work of T. Junttila has also been supported by the Academy

of Finland, project 53695. S. Schulz has also been supported by a grant of the Italian Ministero

dell’Istruzione, dell’Università e della Ricerca and the University of Verona.

Journal of Automated Reasoning (2005) 35: 265Y293
DOI: 10.1007/s10817-005-9004-z

# Springer 2005



comparison with respect to a reference option setting. We then demonstrate the global effec-

tiveness of our approach by a comparison with several state-of-the-art decision procedures. We

show that the behavior of MATHSAT is often superior to its competitors, both on LAL and in the

subclass of difference logic.

Key words: satisfiability module theory, integrated decision procedures, linear arithmetic logic,

propositional satisfiability.

1. Motivations and Goals

Many practical domains of reasoning require a degree of expressiveness beyond

propositonal logic. For instance, timed and hybrid systems have a discrete com-

ponent as well as a dynamic evolution of real variables; proof obligations arising

in software verification are often Boolean combinations of constraints over in-

teger variables; circuits described at the register transfer level, even though

expressible via Booleanization, might be easier to analyze at a higher level of

abstraction (see e.g., [12]). The verification problems arising in such domains can

often be modeled as satisfiability in Linear Arithmetic Logic (LAL), that is, the

Boolean combination of propositional variables and linear constraints over nu-

merical variables. Because of its practical relevance, LAL has attracted a lot of

interest, and several decision procedures (e.g., SVC [15], ICS [18, 23], CVCLITE

[7, 15], UCLID [35, 43], HDPLL [31]) are able to deal with it.

In this paper, we propose a new decision procedure for the satisfiability of LAL,

both for the real-valued and for the integer-valued case. We start from a well-

known approach, previously applied in MATHSAT [3, 27] and in several other

systems [2, 7, 15, 18, 20, 23, 42]: a propositional SAT procedure, modified to

enumerate propositional assignments for the propositional abstraction of the

problem, is integrated with dedicated theory deciders, used to check consistency

of propositional assignments with respects to the theory. We extend this approach

by improving (1) the top-level procedure, and (2) the mathematical reasoner.

The top-level procedure features a tighter integration between the Boolean

search and the mathematical solver. First, we allow for theory conflict-driven

backjumping (i.e., sets of inconsistent constraints identified in the mathematical

solver are used to drive backjumping and learning at the Boolean level) and

theory deduction (i.e., when possible, assignments for unassigned theory atoms

are automatically inferred from the current partial assignment). Both theory con-

flicts and theory deductions are learned as clauses codifying the relationships

between mathematical atoms at the Boolean level; subsequent search will thus

avoid the generation of Boolean assignments that are not mathematically con-

sistent. Second, we suggest a systematic use of static learning, that is, the a
priori encoding of some basic mathematical facts at the Boolean level before the

Boolean search. This will stop many inconsistent assignments from ever being

enumerated. A moderate increase in the size of the problem is often compensated

by significant speedups in performance. In this way MATHSAT settles in the

266 MARCO BOZZANO ET AL.



middle ground between the Beager^ approach, where mathematical facts are dis-

covered during the search, and the Blazy approaches^ approach (e.g., [39, 43]),

where a very large number of facts may be required in order to lift mathematical

reasoning to Boolean reasoning. Third, we define a stack-based interface between
the Boolean level and the mathematical level, which enables the top level to add

constraints, set points of backtracking, and backjump, in order to exploit the fact

that increasingly larger sets of constraints are analyzed while extending a Bool-

ean model. As a result, the mathematical reasoner can be incremental and back-

trackable and can exploit previously derived information rather than restarting

from scratch at each call. Finally, we consider that mathematical reasoning is, in

many practical cases, performed on the disjoint union of several subtheories (or

clusters). Therefore, rather than solving the problem with a single, monolithic

mathematical solver, we use a separate instance of the mathematical solver for

each independent cluster.

The main idea underlying the mathematical solver for linear arithmetic is that

it is layered, that is, implemented as a hierarchy of solvers for theories of

increasing strength. The consistency of (partial) assignments is checked first in

the logic of equality and uninterpreted function (EUF), then in difference logics,

then in linear arithmetic over the reals, and then in linear arithmetic over the

integers (if needed by the problem). The rationale is that cheaper, more abstract

solvers are called first. If unsatisfiability at a more abstract level is detected, this

is sufficient to prune the search.

We provide a thorough experimental evaluation of our approach, based on

a large set of benchmarks previously proposed in the literature. We first show

the respective merits of each of the proposed optimizations, comparing

different configurations of MATHSAT with respect to a Bgolden setting^, and
we show to which extent each of the improvements impacts performance. Then

we compare MATHSAT against the state-of-the-art systems (ICS, CVCLITE, and

UCLID) on general LAL problems. We show that our approach is able to deal

efficiently with a wide class of problems, with performance comparable with and

often superior to the other systems. We also compare MATHSAT against the spe-

cialized decision procedures DLSAT and TSAT++ on the subclass of difference

logics.

This paper is structured as follows. In Section 2 we define linear arithmetic

logic. In Section 3 we describe the basic MATHSAT approach, and in Section 4

we present the enhanced algorithm. In Section 5 we describe the ideas underlying

the mathematical solver. In Section 6 we described the implementation of the

MATHSAT system. In Section 7 we present the result of the experimental eval-

uation. In Section 8 we discuss some related work; and in Section 9 we draw

some conclusions and outline the directions for future work.

This paper updates and extends the content and results presented in a much

shorter conference paper [11].

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 267



2. Background: Linear Arithmetic Logic

Let B :¼ ?;>f g be the domain of Boolean values. Let R and Z be the domains

of real and integer numbers, respectively, and let D denote either of them. By

math-terms over D we denote the linear mathematical expressions built on

constants, variables, and arithmetical operators over D. Examples of math-terms

are constants ci 2 D, variables vi over D, possibly with coefficients (i.e., civj), and
applications of the arithmetic operators + and j to math-terms. Boolean atoms
are proposition Ai, from B: Mathematical atoms are formed by the application of

the arithmetic relations =, m, >, <, Q, e to math-terms. Unspecified atoms can be

either Boolean or mathematical. By math-formulas we denote atoms and their

combinations through the standard Boolean connectives $, K, ¦, Y, 6. For

instance, A1 $((v1 + 5) e 2v3) is a math-formula on either R or Z . A literal is
either an atom (a positive literal) or its negation (a negative literal). Examples of

literals are A1, KA2, (v1 + 5v2 e 2v3 j 2), K(2v1 j v2 = 5). If l is a negative literal
K=, then by BKl^ we denote = rather than KK=. We denote the set of all atoms in

� by Atoms (�), and the subset of mathematical atoms by MathAtoms (�).
An interpretation in D is a mapping I which assigns values in D to variables

and truth values in B to Boolean atoms. Given an interpretation, math-terms and

math-formulas are given values D and in B; respectively, by interpreting con-

stants, arithmetical operators and Boolean connectives according to their standard

(arithmetical or logical) semantics. We write I(�) for the truth value of � under

the interpretation I, and similarly I(t) for the domain value of the math-term t.
We say that I satisfies a math-formula �, written I î �, iff I (�) = B. For
example, the math-formula 82 (A1 Y (v1 j 2v2 Q 4)) $ (KA1 Y (v1 = v2 + 3)) is

satisfied by an interpretation I in Z s.t. I(A1) = B, I(v1) = 8, and I(v2) = 1.

We say that a math-formula 8 is satisfiable in D if there exists an inter-

pretation in D which satisfies 8. The problem of checking the satisfiability of

math-formulas is NP-hard, since standard Boolean formulas are a strict subcase

Figure 1. High level view of the MATHSAT algorithm.

268 MARCO BOZZANO ET AL.



of math-formulas (this means theoretically Bat least as hard^ as standard Boolean

satisfiability, but in practice it turns out to be much harder).

A total (resp., partial) truth assignment for a math-formula � is a function m
from all (resp., a subset of) the atoms of � to truth values. We represent a truth

assignment as a set of literals, with the intended meaning that positive and neg-

ative literals represent atoms assigned to true and to false, respectively. We use

the notation m = {�1, . . . ,�N, K1 , . . . , KM, A1, . . . , AR, KAR+1, . . . , KAS}, where

�1, . . . , �N, 1, . . . , M are mathematical atoms and A1, . . . , AS are Boolean

atoms. We say that m propositionally satisfies �, written m îp�, iff it makes �
evaluate to true. We say that an interpretation I satisfies a truth assignment m iff I
satisfies all the elements of m; if there exists an (resp., no) interpretation that

satisfies an assignment m, then m is said LAL-satisfiable (resp., LAL-

unsatisfiable). The truth assignment {A1, (v1 j 2v2 Q 4), K(v1 = v2 + 3)}

propositionally satisfies (A1 Y (v1 j 2v2 Q 4)) $ (KA1 Y(v1 = v2 + 3)), and it is

satisfied by I s.t. I(A1) = B, I (v1) = 8, and I(v2) = 1.

EXAMPLE 2.1 Consider the following math-formula 8:

: 2v
2
� v3 > 2ð Þ _ A1

n o
^ :A2 _ 2v1 � 4v5 > 3ð Þ �

^ 3v1 � 2v2 	 3ð Þ _ A2

n o
^ : 2v3 þ v4 � 5ð Þ _ : 3v1 � v3 	 6ð Þ _ :A1

n o
^ A1 _ 3v1 � 2v2 	 3ð Þ
n o

^ v1 � v5 	 1ð Þ _ v5 ¼ 5� 3v4ð Þ _ :A1

n o
^ A1 _ v3 ¼ 3v5 þ 4ð Þ _ A2

n o
:

The truth assignment m corresponding to the underlined literals is: 2v2 � v3 > 2ð Þ;:A2; 3v1 � 2v2 	 3ð Þ;: 3v1 � v3 	 6ð Þ; v1 � v5 	 1ð Þ;

v3 ¼ 3v5 þ 4ð Þ�:
(Notice that m is a partial assignment, because it assigns truth values only to a

subset of the atoms of 8.) m propositionally satisfies 8 as it sets to true one literal

of every disjunction in 8. Notice that m is not LAL-satisfiable Y in fact, neither of

the following subassignments of m has a satisfying interpretation:

: 2v2 � v3 > 2ð Þ; 3v1 � 2v2 	 3ð Þ;: 3v1 � v3 	 6ð Þf g ð1Þ

: 3v1 � v3 	 6ð Þ; v1 � v5 	 1ð Þ; v3 ¼ 3v5 þ 4ð Þf g: ð2Þ

Given a LAL-unsatisfiable assignment m, we call a conflict set any LAL-

unsatisfiable subassignment m 0 � m; we say that m 0 is a minimal conflict set if all

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 269



subsets of m 0 are LAL-consistent. For example, both (1) and (2) are minimal

conflict sets of m.

3. The MATHSAT Algorithm: Basics

A much simplified, recursive representation of the basic MATHSAT procedure is

outlined in Figure 1. MATHSAT takes as input a math-formula �, and (by

reference) any empty interpretation I. Without loss of generality, � is assumed

to be in conjunctive normal form (CNF). MATHSAT returns B if � is LAL-

satisfiable (with I containing a satisfying interpretation), and ± otherwise.

MATHSAT invokes MATHDPLL passing as arguments the Boolean formula

8 :¼M2B �ð Þ and (by reference) an empty assignment for 8 and the empty

interpretation I.
We introduce a bijective function M2B (for BMath-to-Boolean^), also

called boolean abstraction function, that maps Boolean atoms into themselves,

math-atoms into fresh Boolean atoms Y so that two atom instances in 8 are

mapped into the same Boolean atom iff they are syntactically identical and

distributes over sets and Boolean connectives. Its inverse function B2M �ð Þ (for

BBoolean-to-Math^) is called refinement, respectively. Both functions can be

implemented efficiently, so that they require a small constant time for mapping

one atom.

MATHDPLL tries to build an assignment m satisfying 8, such that its refinement

is satisfiable in LAL, and the interpretation I satisfies B2M �ð Þ (and �). This is
done recursively, with a variant of DPLL modified to enumerate assignments,

and trying to refine them according to LAL. In particular:

Base. If 8 == B, then m propositionally satisfies M2B �ð Þ . In order to check

whether m is LAL-satisfiable, which shows that 8 is LAL-satisfiable, MATHDPLL

invokes the linear mathematical solver MATHSOLVE on the refinement B2M �ð Þ ,
and returns a Sat or Unsat value accordingly.

Backtrack. If 8 == ±, then m has led to a propositional contradiction. There-

fore MATHDPLL returns Unsat and backtracks.

Unit. If a literal l occurs in 8 as a unit clauses, then l must be assigned a true

value. Thus MATHDPLL is invoked recursively with the formula returned by assign
(l, 8) and the assignment obtained by adding l to m as arguments. assign (l, 8)
substitutes every occurrence of l in 8 with B and propositionally simplifies the

result.

Early pruning. MATHSOLVE is invoked on (the refinement of) the current

assignment m. If this is found unsatisfiable, then there is no need to proceed, and

the procedure backtracks.

270 MARCO BOZZANO ET AL.



Split. If none of the above situations occurs, then choose-literal (8) returns an
unassigned l according to some heuristic criterion. Then MATHDPLL is first

invoked recursively with arguments assign(l, 8) and m?{l}. If the result is

Unsat, then MATHDPLL is invoked with argument assign (Kl, 8) and m?{Kl}.

4. The MATHSAT Algorithm: Enhancements

The algorithm presented in the previous section is oversimplified for explanatory

purposes. It can be easily adapted to deal with advanced SAT solving techniques

such as splitting heuristics, two-literals watching, and restarts (see [44] for an

overview). This section describes several enhancement that have been made to

the interplay between the Boolean and mathematical solvers.

4.1. THEORY-DRIVEN BACKJUMPING AND LEARNING

When MATHSOLVE finds the assignment m to be LAL-unsatisfiable, it also returns

a conflict set h causing the unsatisfiability. This enables MATHDPLL to backjump

in its search to the most recent branching point in which at least one literal l 2 h
is not assigned a truth value, pruning the search space below. We call this

technique theory-driven backjumping. Clearly, its effectiveness strongly depends

on the quality of the conflict sets generated.

EXAMPLE 4.1. Consider the formula 8 and the assignment m of Example 2.1.

Suppose that MATHDPLL generates m following the order to occurrence within 8,
and that MATHSOLVE(m) returns the conflict set (1). Thus MATHDPLL can jump back

directly to the branching point K(3v1 j v3 e 6) without exploring the right

branches of (v3 = 3v5 + 4) and (v1 j v5 e 1). If instead MATHSOLVE(m) returns the
conflict set (2), then MATHSAT backtracks to (v3 = 3v5 + 4). Thus, (2) causes no

reduction in search.

When MATHSOLVE returns a conflict set h, the clause Kh can be added in

conjunction to 8: this will prevent MATHDPLL from generating again any branch

containing h. We call this technique theory-driven learning.

EXAMPLE 4.2. As in Example 4.1, suppose MATHSOLVE(m) returns the conflict

set (1). Then the clause (2v2 j v3 > 2) ¦ K(3v1 j 2v2 e 3) ¦ (3v1 j v3 e 6) is

added in conjunction to �. Thus, whenever a branch containts two elements of

(1), MATHDPLL will assign the third to false by unit propagation.

As in the Boolean case, learning must be used with some care, since it may

cause an explosion in the size of 8. Therefore, some techniques can be used to

discard learned clauses when necessary [8]. Notice however the difference with

standard Boolean backjumping and learning [8]: in the latter case, the conflict set

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 271



propositionally falsifies the formula, while in our case it is inconsistent from the

mathematically viewpoint.

4.2. THEORY-DRIVEN DEDUCTION

With early pruning, MATHSOLVE is used to check whether m is LAL-satisfiable and

thus to possibly prune whole branches of the search. It is also possible to use

MATHSOLVE to reduce the remaining Boolean search: the mathematical analysis of

m performed by MATHSOLVE can discover that the value of some mathematical

atom = =2 m is already determined, based on some subset m 0 2 m of the current

assignment. For instance, consider the case where the literals (v1 = v2) and (v2 j
v3 = 4) are in the current (partial) assignment m, while (v1 j v3 = 4) is currently

unassigned. Since {(v1 = v2), (v2 j v3 = 4)} î (v1 j v3 = 4), atom (v1 j v3 = 4)

must be assigned to B, because assigning it to ± would make m LAL-

inconsistent.

MATHSOLVE is therefore used to detect and suggest to the Boolean search which

unassigned literals have forced values. This kind of deduction is often very

useful because it can trigger new Boolean constraint propagation: the search is

deepened without the need to split. Moreover, the implication clauses describing

the deduction (e.g., K(v1 = v2) ¦ K(v2 j v3 = 4) ¦ (v1 j v3 = 4)) can be learned

at the Boolean level, and added to the main formula: this constrains the remaining

Boolean search even after backtracking.

4.3. A STACK-BASED INTERFACE TO MATHSOLVE

Since the search is driven by the Fstack-based_ Boolean procedure, we define a

stack-based interface to call the math solver. In this way, MATHSOLVE can

significantly exploit previous computations. Consider the following trace (left

column first, then right):

MATHSOLVE ð�1Þ ) Sat Undo �2
MATHSOLVE ð�1[�2Þ ) Sat MATHSOLVE ð�1[�02

� ) Sat

MATHSOLVE ð�1[�2[�3Þ ) Sat MATHSOLVE ð�1[�02[�03
� ) Sat

MATHSOLVE ð�1[�2[�3[�4Þ) Unsat MATHSOLVE ð�1[�02[�03[�04
�) Sat

On the left, an assignment is repeatedly extended until a conflict is found. We

notice that MATHSOLVE is invoked (during early pruning calls) on incremental
assignments. When a conflict is found, the search backtracks to a previous point

(on the right), and MATHSOLVE is then restarted from a previously visited state.

Based on these considerations, our MATHSOLVE is not a function call: it has a

persistent state and is incremental and backtrackable. Incremental means that it

avoids restarting the computation from scratch whenever it is given in input an

assignment m 0 such that m 0 Ð m and m has already proved satisfiable.

Backtrackable means that it is possible to return to a previous state on the stack

272 MARCO BOZZANO ET AL.



in a relatively efficient manner. Therefore MATHSOLVE has primitives to add
constraints to the current state, to set backtrack points, and to jump back to a

previously set backtrack point.

4.4. FILTERING

Another way of speeding MATHSOLVE is to give it smaller but in some sense

sufficient sets of constraints.

4.4.1. Pure Literal Filtering

Assume that a math-atom = occurs only positively in the formula �, that is, there
is no clause in � having the literal K=. That is, = is a pure literal. Now if = is

assigned to false in the current truth assignment m, that is, K= 2 m, we don’t have
to pass K= to MATHSOLVE. The reason is that if an extension m 0 of m proposi-

tionally satisfies �, so will m 0 \{K=} as = is a pure literal. Similar analysis

applies to the case in which = occurs only negatively in �.
Notice that if a pure literal = is assigned to true in m, then it has to be passed

to MATHSOLVE. Furthermore, one may not fix = to true before the MATHDPLL

search as in the purely Boolean case.

4.4.2. Theory-Deduced Literal Filtering

Another way of reducing the number of math-atoms given to MATHSOLVE is to

exploit theory-deduced clauses, i.e., those clauses resulting from theory-driven

learning (Section 4.1), theory-driven deduction (Section 4.2), and static learning

(Section 4.6). For each theory-deduced clause C = l1 ¦. . .¦ ln, each li being a

math-atom or its negation, the truth assignment {Kl1 , . . . ,Kln} is LAL-

unsatisfiable. That is, all interpretations that satisfy all Kl1 , . . . ,Klnj1 must

satisfy the literal ln. Therefore, if the current truth assignment m contains the

literals Kl1, . . . ,Klnj1, and the literal ln is forced to true by unit propagation on

the clause C, there is no need to pass ln to MATHSOLVE as m is LAL-satisfiable

iff m ? {ln} is. In order to detect these cases, the theory-deduced clauses can be

marked with a flag.

Combining the filtering methods requires some care. The literals Kl1, . . . ,
Klnj1 in the current truth assignment must have been passed to MATHSOLVE (i.e.,

not filtered) in order to apply theory-deduced literal filtering to ln.

4.5. WEAKENED EARLY PRUNING

Early pruning calls are used only to prune the search; if the current (partial)

assignment m is found to be unsatisfiable, the search backtracks, but if it is found

to be satisfiable, the search goes deeper and the assignment will be extended.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 273



Therefore, during early pruning calls MATHSOLVE does not have to detect all
inconsistencies; as long as calls to MATHSOLVE at the end of a search branch

faithfully detect inconsistency, correctness and completeness are guaranteed.

We exploit this fact by using a faster, but less powerful version of MATHSOLVE

for early pruning calls. Specifically, in the R domain, handling disequalities re-

quires an extra solver that is often time-consuming (see Section 5). As dis-

equalities in R are typically very low-constraining, and thus very rarely cause

inconsistency, during early pruning calls MATHSOLVE ignores disequalities, which

are instead considered when checking complete search branches.

In the Z domain, as the theory of linear arithmetic on Z is much harder, in

theory and in practice, than that on R [9], during early pruning calls MATHSOLVE

looks for a solution on the reals only.

4.6. STATIC LEARNING

Before starting the actual MATHDPLL search, the problem can be preprocessed by

adding some basic mathematical relationships among the math-atoms as Boolean

constraints to the problem. As the added constraints are consequences of the

underlying theory, the satisfiability of the problem is preserved. The new

constraints may significant help to prune the search space in the Boolean level,
thus avoiding some LAL-unsatisfiable models and calls to the more expensive

MATHSOLVE. In other words, before the search, we learn, at low cost, some basic

facts that most often would have to be discovered, at a much higher cost, by the

math solver during the search.

The simplest case of static learning is based on (in)equalities between math-

terms and constants. Assume that � contains a set of math-atoms of form St =
{(t (1 c1), . . . , (t (n cn)}, where t is a math-term (i 2 {<, e, =, Q, >}, and ci are
constant. First, � is conjoined with a set of constraints over the equality atoms of

form (t = ci) in St, ensuring that at most one of them can be true. This can be

achieved with pairwise mutual exclusion constraints of form K(t = ci) ¦ K(t = cj).
Second, the math-atoms in St are connected with a linear number of binary

constraints that compactly encode the obvious mathematical (in)equality rela-

tionship between them. For instance, if St = {(t e 2), (t = 3), (t > 5), (t Q 7)}, then

� is conjoined with the constraints (t = 3)YK(t > 5), (t = 3)YK(t e 2), (t e
2) Y K(t > 5), and (t Q 7)Y (t > 5). Now (t Q 7) implies (t > 5), K(t = 3) and

K(t e 2) in the Boolean level.
Furthermore, some facts among difference constraints of the form t1 j t2 (

c, ( 2 {<, e, =, Q, >}, can be easily derived and added. First, mutually exclusive

pairs of difference constraints are handled. E.g., if (t1 j t2 e 3), (t2 j t1 < j4) 2
MathAtoms (�), then the clause K (t1 j t2 e 3) ¦K (t2 j t1 < j4) is conjoined to

�. Second, clauses corresponding to triangle inequalities and equalities between

difference constraints are added. For example, if (t1 j t2 e 3), (t2 j t3 < 5), (t1 j
t3 < 9) 2 MathAtoms (�), then (t1 j t2 e 3) $ t3 < 5) Y (t1 j t3 < 9) is added

274 MARCO BOZZANO ET AL.



to �. Similarly, for (t1 j t2 = 3), (t2 j t3 = 0), (t1 j t3 = 5) 2 MathAtoms(�) we
add the constraint (t1 j t2 = 3) A (t2 j t3 = 0)YK(t1 j t3 = 5) to �.

4.7. CLUSTERING

At the beginning of the search, MathAtoms(�), that is, the set of mathematical

atoms, is partitioned into a set of disjoint clusters C1 ? : : :? Ck: intuitively, two

atoms belong to the same cluster if they share a variable. If Li is the sets of

literals built with the atoms in cluster i, it is easy to see that an assignment m is

LAL-satisfiable if and only if each m 7 Li is LAL-satisfiable. Based on this idea,

instead of having a single, monolithic solver for linear arithmetic, the

mathematical solver is instantiated k different times. Each is responsible for

handling the mathematical reasoning within a single cluster. A dispatcher is

responsible for the activation of the suitable mathematical solver instances,

depending on the mathematical atoms occurring in the assignment to be

analyzed.

The advantage of this approach is manifold. First k solvers running on k
disjoint problems are typically faster than running one solver monolithically on

the union of the problem. Furthermore, the construction of smaller conflict sets

becomes easier, and this may result in a significant gain in the overall search.

Finally, when caching the results of previous calls to the linear solvers, it

increases the likelihood of a hit.

5. A Layered MATHSOLVE

In this section, we discuss the structure of MATHSOLVE. We disregard the issues

related to clustering, since the different instances of MATHSOLVE that result are

completely independent of each other. MATHSOLVE is responsible for checking the

satisfiability of a set of mathematical atoms m and returning, as appropriate, a

model or a conflict set.

Figure 2. Control flow of MATHSOLVE.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 275



In many calls to MATHSOLVE, a general solver for linear constraints is not

needed: very often, the unsatisfiability of the current assignment m can be

established in less expressive, but much easier, subtheories. Thus, MATHSOLVE is

organized in a layered hierarchy of solvers of increasing solving capabilities. If a

higher-level solver finds a conflict, then this conflict is used to prune the search at

the Boolean level; if it does not, the lower-level solvers are activated.

Layering can be understood as trying to favor faster solvers for more abstract

theories over slower solvers for more general theories. Figure 2 shows a rough

idea of the structure of MATHSOLVE. Three logical components can be

distinguished. First, the current assignment m is passed to the equational solver,
which deals only with (positive and negative) equalities (Section 5.1). Secondly,

if this solver does not find a conflict, MATHSOLVE tries to find a conflict over the

reals (see Section 5.2). Third, if the current assignment is also satisfiable over the

reals and the variables are to be interpreted over the integers, a solver for linear

arithmetic over the integers is invoked (see Section 5.3).

5.1. EQUALITY AND UNINTERPRETED FUNCTIONS

The first layer of MATHSOLVE is provided by the equational solver, a satisfiability

checker for the logic of unconditional ground equality over uninterpreted

function symbols. It is incremental and supports efficient backtracking. The

solver generates conflict sets, deduces assignments for equational literals, and

can provide explanations for its deductions. Thanks to the equational solver,

MATHSAT can be used as an efficient decision procedure for the full logic of

equality over uninterpreted function symbols (EUF). However, in this section we

focus on the way the equational solver is used to improve the performance on

LAL.

The solver is based on the basic congruence closure algorithm suggested in

[29]. We slightly extend the logic by allowing for enumerated objects and

numbers, with the understanding that each object denotes a distinct domain

element (i.e., an object is implicitly different from all the other objects and from

all numbers). Similarly, different numbers are implicitly different from each

other (and from all objects).

The congruence closure module internally constructs a congruence data

structure that can determine whether two arbitrary terms are necessarily forced to

be equal by the currently asserted constraints, and can thus be used to determine

the value of (some) equational atoms. It also maintains a list of asserted dis-
equations and signals unsatisfiability if either one of these or an implicit dis-

equation is violated by the current congruence.

If two terms are equal, an auxiliary proof tree data structure allows us to

extract the reason, that is, the original constraints (and just those) that forced this

276 MARCO BOZZANO ET AL.



equality. If a disequality constraint is violated, we can return the reason (together

with the violated inequality) as a conflict set.
Similarly, we can perform forward deduction: for each unassigned equational

atom, we can determine whether the two sides are already forced to be equal by

the current assignment, and hence whether the atom has to be asserted as true or

false. Again, we can extract the reason for this deduction and use it to represent

the deduction as a learned clause on the Boolean level.

There are two ways in which the equational solver can be used: as a full

solver for a purely equational cluster or as a layer in the arithmetic reasoning

process. In the first case, the equational solver is associated to a cluster not

involving any arithmetic at all, which contains only equation of the vi ( vj, vi (
cj, with ( 2{=, m}. As stated above, the equation solver implicitly knows that

syntactically different constants in D are semantically distinct. Hence, it provides

a full solver for some clusters, avoiding the need to call an expensive linear

solver on an easy problem. This can significantly improve performance, since in

practical examples a purely equation cluster often is present Y typical examples

are the modeling of assignments in a programming language, and gate and

multiplexer definitions in circuits.

In the second case, the equational solver also receives constraints involving

arithmetic operators. While arithmetic functions are treated as fully uninter-

preted, the equational solver has a limited interpretation of < and e, knowing
only that s < t implies s m t, and s = t implies s e t and K(s < t). However, all
deductions and conflicts under EUF semantics are also valid under fully

interpreted semantics. Thus, the efficient equational solver can be used to prune

the search space. Only if the equational solver cannot deduce any new

assignments and reports a tentative model, does this model need to be analyzed

by lower solvers.

5.2. LINEAR ARITHMETIC OVER THE REALS

To check a given assignment m of linear constraints for satisfiability over the

reals, MATHSOLVE first considers only those constraints that are in the difference

logic fragment. That is, it considers the subassignment of m consisting of all

constraints of the forms vi j vj ( c and vi ( c, with ( 2 {=, m, <, >, e, Q}.
Satisfiability checking for this subassignment is reduced to a negative-cycle

detection problem in the graph whose nodes correspond to variables and whose

edges correspond to the constraints. MATHSOLVE uses an incremental version of

the Bellman-Ford algorithm to search for a negative-cycle and hence for a

conflict. See, for instance [13], for background information. In many practical

cases, for instance in bounded model-checking problems of timed automata, a

sizable amount or even all of m is in the difference logic fragment. This causes a

considerable speedup, since the Bellman-Ford algorithm is much more efficient

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 277



than a general linear solver and generally generates much better (smaller) conflict

sets.

If the difference logic fragment of m turns out to be satisfiable, MATHSOLVE

checks the satisfiability of the subassignment of m consisting of all constraints

except the disequalities by means of the simplex method. MATHSOLVE uses a

variant of the simplex method, namely, the Cassowary algorithm (see [10]), that

uses slack variables to efficiently allow the addition and removal of constraints

and the generation of minimal conflict set.

When this also turns out to be consistent, disequalities are taken into account:

the incremental and backtrackable machinery is used to check, for each

disequality Scivi m cj in m, and separately from the other disequalities, whether

it is consistent with the non-disequality constraints in m. We do so by adding and

retracting both Scivi < cj and Scivi > cj. If one of the disequalities is inconsistent,
the assignment m is inconsistent. However, because the theory of the reals is

(logically) convex, if each disequality separately is consistent, then all of m is

consistent Y this follows from a dimensionality argument, basically because it

is impossible to write an affine subspace A of Rk as a finite union of proper

affine subspaces of A.

5.3. LINEAR ARITHMETIC OVER THE INTEGERS

Whenever the variables are interpreted over the reals, MATHSOLVE is done at this

point. If the variables are to be interpreted over the integers, and the problem is

unsatisfiable in R , then it also is so over Z . When the problem is satisfiable

in the reals, it is possible that it is not so in the integers. The first step carried out

by MATHSOLVE in this case is a simple form of branch-and-cut (see, e.g., [26])

that searches for solutions over the integers by tightening the constraints. The

algorithm acts on the representation of the solution space constructed over the

integers and makes use of the incremental and backtrackable machinery. Branch-

and-cut also takes into account disequalities.

Branch-and-cut is complete only when the solution space is bounded, and

there are practical cases when it can be very slow to converge. Therefore, if it

does not find either an integer solution or a conflict within a small, predetermined

amount of search, the current assignment is analyzed with the FourierYMotzkin

Elimination (FME) procedure. Since it is computationally expensive, FME is

called only as a last resort.

6. The MATHSAT System

The MATHSAT system is a general solver implementing the ideas and algorithms

described earlier in this paper. It also has some other features and accepts a richer

input language than pure LAL, as for example, equalities over uninterpreted

functions are allowed.

278 MARCO BOZZANO ET AL.



It is structured in three main components: (i) a preprocessor, (ii) a Boolean

satisfiability solver, and (iii) the MATHSOLVE theory reasoner.

6.1. PREPROCESSOR

MATHSAT supports a rich input language, with a large variety of Boolean and

arithmetic operators, including a ternary if-then-else construct on the term and

formula level. For reasons of simplicity and efficiency, MATHDPLL, the core

engine of the solver, handles a much simplified language. Reducing the rich input

language to this simpler form is done by a preprocessor module.

The preprocessor performs some basic normalization of atoms, so that the

core engine has to deal only with a restricted set of predicates. It eliminates each

ternary if-then-else term t = ITE(b, t1, t2) over math terms t1 and t2 by replacing

it with a new variable vt and adding the boolean if-then-else constraint ITE (b,
vt = t1, vt = t2) to the formula. Furthermore, it uses a standard linear-time, satis-

fiability preserving translation to transform the formula (including the remaining

if-then-else on the Boolean level) into clause normal form.

6.2. BOOLEAN SOLVER

The propositional abstraction of the math-formula produced by the preprocessor

is given to the Boolean satisfiability solver extended to implement the MATHDPLL

algorithm described in Section 3. This solver is built upon the MINISAT solver

[17], from which it inherits conflict-driven learning and back-jumping, restarts

[8, 22, 37], optimized Boolean constraint propagation based on the two-watched

literal scheme, and the VSIDS splitting heuristics [28]. In fact, if MATHSAT is

given a purely Boolean problem, it behaves substantially like MINISAT, as

MATHSOLVE is not instantiated.j The communication with MATHSOLVE is carried

out through an interface (similar to the one in [20]) that passes assigned literals,

LAL-consistency queries, and back-tracking commands and receives back

answers to the queries, mathematical conflict sets, and implied literals (Section 3).

The Boolean solver has been extended to handle some options relevant when

dealing with math-formulas. For instance, MATHSAT inherits MINISAT’s feature

of periodically discarding some of the learned clauses to prevent explosion of the

formula size. However, clauses generated by theory-driven learning and forward

deduction mechanisms (Section 3) are never discarded, as a default option, since

they may have required a lot of work in MATHSOLVE. As a second example, it is

possible to initialize the VSIDS heuristics weights of literals so that either

Boolean or theory atoms are preferred as splitting choices early in the MATHDPLL

search.

j In some experiments on some very big pure SAT formulas, which are not reported here,
MATHSAT took on average 10Y20% more time than MINISAT to solve the same instances.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 279



6.3. MATHSOLVE

The implementation of MATHSOLVE is composed of several software modules.

The equational reasoner is implemented in C/C++ and reuses some of the data

structures of the theorem prover E [33] to store and process terms and atoms. The

module for handling difference constraints is developed in C++. The simplex

algorithm for linear arithmetic over the reals is based on the Cassowary system

[5]. The branch-and-cut procedure is implemented on top of it and uses the

incrementally features of Cassowary to perform the search. For the Four-

ierYMotzkin elimination. MATHSOLVE uses the Omega system [30].

A very important point is that MATHSAT is able to deal with infinite-precision

arithmetic. To this end, the mathematical solver handles arbitrary large rational

numbers by means of the GMP library [21].

7. Experimental Evaluation

In this section we report on the experiments we have carried out to evaluate the

performance of our approach. The experiments were run on a bi-processor

XEON 3.0 GHz machine with 4 GB of memory (test in Section 7.2), on a 4-

Processor PentiumIII 700 MHz machine with 6 GB of memory (tests in Section

7.3.1), and on a bi-processor XEON 1.4 GHz machine with 2 GB of memory

(tests in Section 7.3.2), all of them running Linux RedHat Enterprise. The time

limit for all the experiments was set to 300 s, and the memory limit was set to

512 MB.

An executable version of MATHSAT and the source files of all the experiments

performed in the paper are available at [27].

7.1. DESCRIPTION OF THE TEST CASES

The set of benchmarks we used in the experimentation, described below,

involves all the suites available in the literature we are aware of. For the test on

LAL, we used the following suites. The SAL suite, originally presented in [32],

is a set of benchmarks for ground decision procedures, derived from bounded

model checking of timed automata and linear hybrid systems, and from test-case

generation for embedded controllers. The RTLC suite, provided by the authors

of [31], formalizes safety properties for RTL (see [31] for a more detailed

description). The CIRC suite, generated by ourselves, encodes the verification of

certain properties for some simple circuits. The suite is composed of three kinds

of benchmark, all of them being parametric in (and scaling up with) N, that is,

the width of the data-path of the circuit, so that [0..2N j 1] is the range of integer

variables. In the first benchmark, the modular sum of the integers is checked for

280 MARCO BOZZANO ET AL.



inequality against the bitwise sum of their bit decomposition. The negation of the

resulting formula is therefore unsatisfiable. In the second benchmark, two iden-

tical shift-and-add multipliers and two integers a and b are given; a and the bit

decomposition of b (respectively b and the bit decomposition of a) are given as

input to the first (respectively, the second) multiplier and the outputs of the two

multiplier are checked for inequality. The negation of the resulting formula is

therefore unsatisfiable. In the third benchmark, an integer a and the bitwise

decomposition of an integer b are given as input to a shift-and-add multiplier; the

output of the multiplier is compared with the constant integer value p2, p being

the biggest prime number strictly smaller than 2N. The resulting formula is

satisfiable, but it has only one solution, where a = b = p. The TM suite is a set of

benchmark for (temporal) metric planning, provided to us by the authors of [36]

(see also [41]).

The benchmark below have been used for the comparison in Section

7.3.2 and fall into the difference logic fragment of LAL. The DLSAT suite is

provided to us by the authors of [14] (see the paper for more detail). The suite

contains two different sets of benchmark: the first set formalizes the problem of

finding the optimal schedule for the job shop problem, a combinatorial op-

timization problem; the second set is concerned with bounded model checking

of timed automata that model digital circuits with delays, and formalizes the

problem of finding the maximal stabilization time for the circuits. The SEP

suite [34] is a set of benchmarks for separation logic (i.e., difference logic)

derived from symbolic simulation of several hardware designs, which is

maintained by O. Strichman. The DTP suite [1, 38] is a set of benchmarks

from the field of temporal reasoning. The set of benchmark is similar in spirit to

the standard random k-CNF SAT benchmark and consists of randomly generated

2-CNF difference formulas. For our tests we have selected 60 randomly ge-

nerated DTP formulas with 35 numerical variables in the Bhard^ satisfiability

transition area.

The SAL, TM, DLSAT, and DTP suites are in the domain of reals, while the

RTCL, CIRC, and SEP suites are in the domain of integers. Because of the

different sources of problems within one suite, the benchmark suites cannot be

straightforwardly characterized in terms of structural properties of their formulas

(except for the DPT suite, in which only positive difference inequalities in the

form (x j y e c) occur). Nearly all problems contain a significant quantity of

Boolean atoms (e.g., control variables in circuits, actions in planning problems,

discrete variables in timed and hybrid system). Nearly all problems contain many

difference inequalities in the form (x j y e c) (e.g., time constraints in sched-

uling problems and in timed and hybrid systems verification problems, range

constraints in RTL, circuits). Some problems, such as ATPG problems in RTLC

and timed and hybrid systems in SAL, contain lots of simple equalities in the

form (x = y) or (x = c). The problems in the CIRC suite contain complex LAL

atoms with very big integer constants, like (b = Si 2
ibi) or (x e 232).

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 281



7.2. EVALUATING DIFFERENT OPTIMIZATIONS

In this section we evaluate the impact of several optimizations on the overall

performance of MATHSAT. The experimental evaluation has been conducted in

the following way. We chose a Bdefault^ option configuration for MATHSAT, that

involves theory-driven backjumping and learning, theory-driven deduction,

weakened early pruning, static learning, clustering, and EQ layering (that is,

using the EUF solver as described in the second case of Section 5.1).

The configuration has been tested against each of the configuration obtained

by switching off (or changing) different options one at a time (in other words,

each version that has been tested differs from the default version only with

respect to one of the optimizations). Specifically, the variants we considered are

respectively the default version without (weekend) early pruning, with full early

pruning, without clustering, without theory-driven deduction, without static learn-

ing, and without EQ layering.

The six variants of MATHSAT have been run on the following test suites: SAL,

RTLC, CIRC, TM, DLSAT, SEP, DTP.

The scatter plots of the overall results are given in Figure 3. Each plot reports

the results of the evaluation on each of the options. The X and Y axes show,

Figure 3. Scatter plots for six different variations of MATHSAT (Y axis), compared against the

default version (X axis).

282 MARCO BOZZANO ET AL.



respectively, the performance of the default version and of the modified ver-

sion of MATHSAT. A dot in the upper part of a picture, that is, above the diagonal,

means that the default version performs better, and vice versa. The two upper-

most horizontal lines represent benchmarks that ended in time-out (lower) or

out-of-memory (higher) for the modified version of MATHSAT, whereas the two

rightmost vertical lines represent time-out (left) or out-of-memory (right) for the

default version. Notice that the axes are logarithmic, so that only big per-

formance gaps are highlighted. For example, the fact that a variant is 50% faster

or slower than the default on some sample (i.e., a 1.5 performance factor) is

hardly discernible on these plots.

From the plots in Figure 3 we observe the following facts.

Y Dropping (weakened) early pruning worsens the performances significant-

ly, or even drastically, in most benchmarks. This is due to the fact that

early pruning may allow for significant cuts to the boolean search tree, and

that the extra cost of intermediate calls to MATHSOLVE is much reduced by

the incrementality of MATHSOLVE. From nearly all our experiments, it turns

out that early pruning causes a significant reduction of the number of

branches explored in the Boolean search tree, which is proportional to the

overall reduction of CPU time.
Y Using full early pruning instead of its weakened version most often worsens

performances, on both R and Z domains. From the experimental data, we

see that full early pruning does not introduce significant reductions in the

number of boolean branches explored, while the calls to MATHSOLVE require

longer times on average.

Within the R domian, this fact seems to suggest that ignoring disequalities

in the consistency check makes MATHSOLVE faster without reducing sig-

nificantly the pruning effect of the boolean search space. Within the R
domain, this fact seems to suggest that in most cases the assignments that

are consistent in R are consistent also in Z and that the overhead due to

handling integers also in early pruning calls in sometimes heavy.
Y Dropping clustering slightly worsens the performances in most cases, al-

though the gaps are not dramatic. A possible explanation is that the effects

of Bdividing and conquering^ the mathematical search space are not as

relevant as those of other factors (e.g., cutting the Boolean search space).

This combines with the fact that the mathematical solver is very effective

in producing small conflict sets, even in presence of larger problems. In our

test, only a few tests actually had more than one cluster. A more refined

analysis shows that for the problems with only a single cluster the overhead

is not significant.
Y Dropping theory-driven deduction worsens the performance in most cases.

The importance of deduction is both in the immediate effect of assigning

truth values to unassigned literals, which fires Boolean constraint prop-

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 283



agation, and in the learning of extra clauses from the deduction. From our

experiments, it turns out that theory-driven deduction is most effective in

problems that are rich in simpler equalities like (x = c) and (x = y) (e.g., the
problems in the RTLC and the BMC on timed system problems in SAL),

which can be easily and effectively deduced by the EUF solver.
Y Static learning seems to introduce only slight improvements on average.

This may be due to the fact that most benchmarks derive from the encoding

of verification problems, so that short clauses that can be learned easily

are already part of the encodings (see, e.g., [4]). Moreover, in general, the

effect of static learning is hindered in part by theory-driven learning. From

our experiments, it turns out that in some benchmarks (e.g., DTP, and

partly DLSAT and CIRC) where lots of clauses can be learned off-line,

static-learning is effective (e.g., more than one order magnitude faster on

DTP) while on other benchmarks where very few or no clause can be

learned off-line, static learning is ineffective.
Y Dropping EQ layering worsens the performance in most cases. We believe

this is due to the fact that many practical problems contain lots of simple

equalities, from which lots of information can be deduced and learned by

simply applying equality propagation and congruence closure. From our

experiments, it turns out that EQ layering is most effective in problems

which are rich of simpler equalities like (x = c) and (x = y) (e.g., the

problems in RTLC and the BMC on timed system problems in SAL),

which can be easily and effectively handled by the EUF solver.

Figure 4 shows the impact of switching off simultaneously all six options

described above. We notice that, altogether, the six optimizations improve the

performances significantly, and even dramatically in most cases.

7.3. COMPARISON WITH OTHER STATE-OF-THE-ART TOOLS

In this section we report the results of the evaluation of MATHSAT with respect

to other state-of-the-art tools. We distinguish the evaluation into two parts: in

Figure 4. Scatter plots for the version of MATHSAT with all features disabled (Y axis)

compared against the default version (X axis).

284 MARCO BOZZANO ET AL.



Section 7.3.1 we compare MATHSAT against CVC, ICS, and UCLID, which

support linear arithmetic logic (LAL), whereas in Section 7.3.2 we compare

MATHSAT against TSAT++ and DLSAT, which are specialized solvers for

difference logic (DL).

Figure 5. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s times,

respectively.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 285



7.3.1. Comparison on Linear Arithmetic Logic

We have compared MATHSAT with ICS [18, 23], CVCLITE [7, 15], and UCLID

[35, 43]. We ran ICS version 2.0 and UCLID version 1.0. For CVCLITE, we used

the version available on the online repository, as of 10 October 2004, given that

the latest officially released version showed a bug related to the management of

integer variables (the version we used turned out to be much faster than the

official one).

The results are reported in Figure 5. Each column shows the comparison

between MATHSAT and, respectively, CVCLITE, ICS and UCLID. Each of the

rows corresponds to the comparison of the four systems on the SAL, RTCL,

CIRC, and TM test suites, respectively.

Each point in the scatter plot corresponds to a problem run; on the X axis we

have the execution time of MATHSAT, while the Y axis shows the execution time

of the competitor system. A point above the diagonal means a better performance

of MATHSAT and vice versa. The two uppermost horizontal lines represent

benchmarks that ended in time-out (lower) or out-of-memory (higher) for the

competitor system, whereas the two rightmost vertical lines represent time-out

(left) or out-of-memory (right) for MATHSAT.

The comparison with CVCLITE shows that MATHSAT performs generally

much better on the majority of the benchmarks in the SAL suite (CVCLITE

timeouts on several of them, MATHSAT only on five of them). On the RTLC

suite, the comparison is slightly in favor of MATHSAT. For the CIRC and TM

suites, the comparison is definitely in favor of MATHSAT, although there are a

few problems in the TM suite that neither of the systems can solve.

The comparison with ICS is reported in the second column. We see that on

the SAL suite (i.e., on ICS own test suite) ICS is slightly superior on the smaller

problems. However, MATHSAT performs slightly better on the medium and

significantly better on the most difficult problems in the suite, where ICS

repeatedly times out. In the RTLC suite, ICS is clearly dominated by MATHSAT.

In the CIRC suite MATHSAT performs better on nearly all tests, although the

performance gaps are not impressive. In the TM suite, ICS performs slightly

better than MATHSAT.

The comparison with UCLID is limited to the problems that can be expressed,

that is, some problems in SAL and RTLC, and shows a very substantial

performance gap in favor of MATHSAT.

An alternative view of the comparison is shown in Figures 6 and 7 (these

curves are also known as runtime distributions). For each of the systems, we

report the number of benchmarks solved (Y axis) in a given amount of time

(X axis) (the samples are ordered by increasing computaion time). The upper

point in the trace also shows how many samples were solved within the time

limit. (Notice that the data for UCLID must be interpreted with care because it

was confronted only with a subset of the problems. For the same reason, UCLID

is not reported in the totals).

286 MARCO BOZZANO ET AL.



The curves highlight that UCLID is the worst scorer except for the RTLC

suite, where it performs better than ICS, that MATHSAT and ICS perform globally

better than CVCLITE, and that MATHSAT is sometimes slower on the smaller

problems than ICS, but more powerful when it comes to harder problems.

One potential criticism to every empirical comparison is that the choice of the

test cases may bias the results. For our tests, however, we remark that we have

run all the test cases used by the ICS team in [16], that we have also introduced

Figure 7. Number of benchmarks solved (Y axis) versus time (X axis) (all suites).

Figure 6. Number of benchmarks solved (Y axis) versus time (X axis) for each suite.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 287



other suites with problems from other application domains, and that, except for

the CIRC suite, all the suites we have used have been proposed by other authors

in previous papers.

7.3.2. Comparison on Difference Logic

We also compared MATHSAT with TSAT++ [2, 42] and DLSAT [14], which are

specialized solvers for difference logics. We did not include in the comparison

SEP [34, 40], a decision procedure based on an eager encoding in propositional

logic, since it is known to be outperformed by TSAT++ [2].

In Figure 8 we report the results of the comparison between MATHSAT and

TSAT++ (left column), and DLSAT (right column). Figure 9 shows an overall

comparison using runtime distributions.

MATHSAT performs slightly better than TSAT++ on the DLSAT suite, slightly

worse or equivalently better on the SEP suite, and significantly better on the DTP

suite (i.e., TSAT++ own suite). MATHSAT performs significantly better than

DLSAT on its own suite, slightly worse on the SEP suite (notice that the samples

Figure 8. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s

times, respectively.

288 MARCO BOZZANO ET AL.



here are much fewer and much simpler) and significantly better in the DTP suite.

On the whole, we can see that MATHSAT and TSAT++ both outperform DLSAT.

Interestingly, MATHSAT exhibits on these problems a behavior that is com-

parable to or even better than TSAT++, which is a highly specialized solver,

despite its ability to deal with a larger class of problems.

8. Related Work

In this paper we have presented a new decision procedure for linear arithmetic

logic. The verification problem for LAL is well known and has received a lot of

interest in the past. In particular, decision procedures are the ones considered in

Section 7.3, namely, CVCLITE [7, 15], ICS [18, 23], and UCLID [35, 43].

CVCLITE is a library for checking validity of quantifier-free first-order

formulas over several interpreted theories, including real and integer linear

arithmetic, arrays, and uninterpreted functions. CVCLITE replaces the older tools

SVC and CVC [15]. ICS is a decision procedure for the satisfiability of formulas

in a quantifier-free, first-order theory containing both uninterpreted function

symbols and interpreted symbol from a set of theories including arithmetic,

Figure 9. Number of benchmarks solved (Y axis) versus time (X axis) for each suite.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 289



tuples, arrays, and bit vectors. UCLID is a tool incorporating a decision functions

procedure for arithmetic of counters, the theories of uninterpreted functions and

equality (EUF), separation predicates, and arrays. UCLID is based on an Beager^
reduction to propositional SAT; that is, the input formula is translated into a

SAT formula in a single satisfiability-preserving step, and the output formula is

checked for satisfiability by a SAT solver.

In this paper, we have compared these tools using benchmarks from linear

arithmetic logic (in the case of UCLID the subset of arithmetic of counters). A

comparison on the benchmarks dealing with the theory of EUF is part of our

future work.

Other relevant systems are Verifun [19], a tool using lazy-theorem proving

based on SAT-solving, suporting domain-specific procedures for the theories of

EUF, linear arithmetic and the theory of arrays, and the tool ZAPATO [6], a tool for

counterexample-driven abstraction refinement whose overall architecture is

similar to Verifun. The DPLL(T) [20] tool is a decision procedure for the theory

of EUF. Similarly to MATHSAT, DPLL(T) is based on a DPLL-like SAT-solver

engine coupled with an efficient congruence closure module [29] that has

inspired our own equational reasoner. However, our use of EUF reasoning is

directed to tackling the harder problem of LAL satisfiability.

ASAP [25] is a decision procedure for quantifier-free Presburger arithmetic

(that is, the theory of LAL over nonnegative integers). ASAP is implemented on

top of UCLID and would have been a natural candidate for our experimental

evaluation; unfortunately, a comparison was not possible because neither the sys-

tem nor the benchmarks described in [25] have been made available.

We mentioned HDPLL, a decision procedure for LAL, specialized for the

verification of circuits at the RTL level [31]. The procedure is based on DPLL-

like Boolean search engine integrated with a constraint solver based on Fourier-

Motzkin elimination and finite domain constraint propagation. According to the

experimental results in [31], HDPLL seems to be very effective for its appli-

cation domain. We are very interested in incorporating some of the ideas into

MATHSAT and in performing a thorough experimental comparison. However,

HDPLL is not publicly available.

Concerning the fragment of difference logic, other related tools are the ones

considered in Section 7.3.2, namely, TSAT++ [2, 42], and DLSAT [14]. While

TSAT++ and DLSAT implemented an approach similar to MATHSAT, they are

specialized to dealing with difference logics and do not implement any form of

layering. In general, TSAT++ appears to be much more efficient than DLSAT,

based on a lean implementation that tightly integrates the theory solver with a

state-of-the-art library for SAT. An alternative approach is implemented in SEP

[34, 40], that is based on a eager approach that reduces satisfiability of the

difference logic to the satisfiability of a purely propositional formula.

Concerning the very different domain of constraint logic programming, we

notice that some ideas related to the mathematical solver(s) presented in this

290 MARCO BOZZANO ET AL.



paper (i.e., layering, stack-based interfaces, theory-deduction) are to some extent

similar to those presented in [24].j

9. Conclusions and Future Work

In this paper we have presented a new approach to the satisfiability of linear

arithmetic logic. The work is carried out within the (known) framework of

integration between off-the-shelf SAT solvers, and specialized theory solvers. We

proposed several improvements. In the top level algorithm, we exploit theory

learning and deduction, theory-driven backjumping, and we adopt a stack-based

interface that allows for an incremental and backtrackable implementation of the

mathematical solver. We also use static learning and clustering.We heavily exploit

the idea of layering: the satisfiability of theory constraints is evaluated in theories

of increasing strength (equality, linear arithmetic over the reals, and linear

arithmetic over the integers). The idea is to prefer less expensive solvers (for

weaker theories), thus reducing the use of more expensive solvers.We carried out a

thorough experimental evaluation of our approach: our MATHSAT solver is able to

tackle effectively a wide class of problems, with performance comparable with

and often superior to the state-of-the-art competitors, both on LAL problems and

against specialized competitors on the subclass of difference logics.

As future work, we plan to enhance MATHSAT by investigating different

splitting heuristics and the integration of other boolean reasoning techniques, that

are complementary to DPLL. An extension of MATHSAT to nonlinear arithmetics

is currently ongoing, based on the integration of computer-algebraic methods.

Further extensions include the development of specialized modules to deal with

memory access, bit-vector arithmetic, and the extension to the integration of EUF

and LA. On the side of verification, we envisage MATHSAT as a back-end for

lifting SAT-based model checking beyond the Boolean case, to the verification of

sequential RTL circuits and of hybrid systems.

References

1. Armando, A., Castellini, C. and Giunchiglia, E.: SAT-based procedures for temporal

reasoning, in Proc. European Conference on Planning, CP-99.
2. Armando, A., Castellini, C., Giunchiglia, E. and Maratea, M.: A SAT-based decision

procedure for the boolean combination of difference constraints, in Proc. Conference on
Theory and Applications of Satisfiability Testing (SAT’04), 2004.

3. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A. and Sebastiani, R.: A SAT based

approach for solving formulas over boolean and linear mathematical propositions, in Proc.
CADE’2002, Vol. 2392 of LNAI, 2002.

4. Audemard, G., Cimatti, A., Kornilowicz, A. and Sebastiani, R.: SAT-based bounded model

checking for timed systems, in Proc. FORTE’02, Vol. 2529 of LNCS, 2002.

j We are grateful to an anonymous reviewer for pointing out this fact to us.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 291



5. Badros, G. and Borning, A.: The Cassowary linear arithmetic constraint solving algorithm:

interface and implementation. Technical Report UW-CSE-98-06-04, University of

Washington, 1998.

6. Ball, T., Cook, B., Lahiri, S. and Zhang, L.: Zapato: Automatic theorem proving for predicate

abstraction refinement, in Proc. CAV’04, Vol. 3114 of LNCS, 2004, pp. 457Y461.
7. Barrett, C. and Berezin, S.: CVC Lite: A new implementation of the cooperating validity

checker, in Proc. CAV’04, Vol. 3114 of LNCS, 2004, pp. 515Y518.
8. Bayardo, Jr., R. J. and Schrag, R. C.: Using CSP look-back techniques to solve real-world

SAT instances, in Proc. AAAI/IAAI’97, 1997, pp. 203Y208.
9. Bockmayr, A. and Weispfenning, V.: Solving numerical constraints, in Handbook of

Automated Reasoning, MIT, 2001, pp. 751Y842.
10. Borning, A., Marriott, K., Stuckey, P. and Xiao, Y.: Solving linear arithmetic constraints for

user interface applications, in Proc. UIST’97, 1997, pp. 87Y96.
11. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S. and

Sebastiani, R.: An incremental and layered procedure for the satisfiability of linear arithmetic

logic, in Proc. TACAS 2005, Vol. 3440 of LNCS, 2005, pp. 317Y333.
12. Brinkmann, R. and Drechsler, R.: RTL-Datapath verification using integer linear program-

ming, in Proc. ASP-DAC 2002, 2002, pp. 741Y746.
13. Cherkassky, B. and Goldberg, A.: Negative-cycle detection algorithms, Math. Program. 85

(1999), 277Y311.
14. Cotton, S., Asarin, E., Maler, O. and Niebert, P.: Some progress in satisfiability checking for

difference logic, in Proc. FORMATS-FTRTFT 2004, 2004.
15. CVC. CVC, CVCLITE and SVC. http://verify.stanford.edu/{CVC, CVCL, SVC}.

16. de Moura, L. and Ruess, H.: An experimental evaluation of ground decision procedures, in R.

Alur and D. Peled (eds.), Proc. 15th Int. Conf. on Computer Aided Verification-CAV04, Vol.
3114 of LNCS. Boston, Massachusetts, 2004, pp. 162Y174.

17. Eén, N. and Sörensson, N.: An extensible SAT-solver, in Theory and Applications of
Satisfiability Testing (SAT 2003), Vol. 2919 of LNCS, 2004, pp. 502Y518.

18. Filliâtre, J.-C., Owre, S., Ruess, H. and Shankar, N.: ICS: Integrated canonizer and solver, in

Proc. CAV’01, Vol. 2102 of LNCS, 2001, pp. 246Y249.
19. Flanagan, C., Joshi, R., Ou, X. and Saxe, J.: Theorem proving using lazy proof explication, in

Proc. CAV’03, Vol. 2725 of LNCS, 2003, pp. 355Y367.
20. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A. and Tinelli, C.: DPLL(T): fast

decision procedures, in Proc. CAV’04, Vol. 3114 of LNCS, 2004, pp. 175Y188.
21. GMP. GNU Multi Precision Library. http://www.swox.com/gmp.

22. Gomes, C., Selman, B. and Kautz, H.: Boosting combination search through randomization,

in Proc. of the Fifteenth National Conf. on Artificial Intelligence, 1998, pp. 431Y437.
23. ICS. ICS. http://www.icansolve.com.

24. Jaffar, J., Michaylov, S., Stuckey, P.J. and Yap, R.H.C.: The CLP(R) languages and systems,

ACM Trans. Program. Lang. Syst. (TOPLAS) 14(3) (1992), 339Y395.
25. Kroening, D., Ouaknine, J., Seshia, S. and Strichman, O.: Abstraction-based satisfiability

solving of Presburger arithmetic, in Proc. CAV’04, Vol. 3114 of LNCS, 2004, pp. 308Y320.
26. Land, H. and Doig, A.: An automatic method for solving discrete programming problems,

Econometrica 28 (1960), 497Y520.
27. MATHSAT. MATHSAT. http://mathsat.itc.it.

28. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S.: Chaff engineering an

efficient SAT solver, in Proc. DAC’01, 2001, pp. 530Y535.
29. Nieuwenhuis, R. and Oliveras, A.: Congruence closure with integer offset, in Proc. 10th

LPAR, 2003, pp. 77Y89.
30. Omega. Omega. http://www.cs.umd.edu/projects/omega.

292 MARCO BOZZANO ET AL.



31. Parthasarathy, G., Iyer, M., Cheng, K.-T. and Wang, L.-C.: An efficient finite-domain

constraint solver for circuits, in Proc. DAC’04, 2004, pp. 212Y217.
32. SAL. SAL Suite. http://www.csl.sri.com/users/demoura/gdp-benchmark.html.

33. Schulz, S.: E-A Brainiac theorem prover, AI Commun. 15(2/3) (2002), 111Y126.
34. SEP. SEP Suite, http://iew3.technion.ac.il/~ofers/smtlib-local/benchmarks.html.

35. Seshia, S., Lahiri, S. and Bryant, R.: A hybrid SAT-based decision procedure for separation

logic with uninterpreted function, in Proc. DAC’03, pp. 425Y430.
36. Shin, J.-A. and Davis, E.: Continuous time in a SAT-based planner, in Proc. AAAI-04, 2004,

pp. 531Y536.
37. Silva, J. P. M. and Sakallah, K. A.: GRASP Y A new search algorithm for satisfiability, in

Proc. ICCAD’96, 1996, pp. 220Y227.
38. Stergiou, K. and Koubarakis, M.: Backtracking algorithms for disjunctions of temporal

constraints, Artif. Intell. 120(1) (2000), 81Y117.
39. Strichman, O.: On solving presburger and linear arithmetic with SAT, in Proc. of Formal

Methods in Computer-Aided Design (FMCAD 2002), 2002.
40. Strichman, O., Seshia, S., Bryant, R.: Deciding separation formulas with SAT, in Proc. of

Computer Aided Verification, (CAV’02).
41. TM. TM-LPSAT. http://csl.cs.nyu.edu/~jiae/.

42. TSAT. TSAT++. http://www.ai.dist.unige.it/Tsat.

43. UCLID.UCLID. http://www-2.cs.cmu.edu/~uclid.

44. Zhang, L. and Malik, S.: The quest for efficient boolean satisfiability solves, in Proc.
CAV’02, 2002, pp. 17Y36.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 293



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




